A Gleeful Algorithm Efficiently generating sums of consecutive primes

Eleanor Waiss

Department of Mathematical Sciences '25 Butler University

11 April 2025 Butler Undergraduate Research Conference

Let p_i denote the *i*-th prime number.

Definition

A *gleeful number* is a number *g* that can be written as a sum of consecutive primes:

$$g=p_i+p_{i+1}+\cdots+p_{i+\ell}=\sum_{k=i}^{i+\ell}p_i.$$

$$17 = 2 + 3 + 5 + 7$$
$$2357 = 773 + 787 + 797 = 461 + 463 + 467 + 487$$

Each unique way to express a gleeful number is a *representation*. The *length* of a representation is the value ℓ .

Theorem (Moser, 1963)

Let f count the representations of a gleeful number g. Then

$$\lim_{n\to\infty}\frac{\sum_{i=1}^n f(i)}{n} = \log 2 \approx 0.6931.$$

Moser posed four open problems that arise with this result:

- Is f(n) = 1 infinitely often?
- **2** Is f(n) = k solvable for every integer $k \ge 0$?
- Ooes the set of numbers n such that f(n) = k have positive density for every integer k ≥ 0?

• Is
$$\limsup_{n\to\infty} f(n) = \infty$$
?

Get empirical data to non-rigourously answer Moser's questions by way of frequency table:

- Fix some upper bound *n*;
- Explicitly construct every representation possible for $g \leq n$;
- Summarize frequencies—do they follow some statistical distribution?

• Construct an array of all prime numbers $\leq n$:

2 Construct the prefix sums S_i of primes:

• Consider all differences of pairs $S_j - S_i$, $0 \le i < j \le \pi(n)$

 $2, \quad 5, 3, \quad 10, 8, 5, \quad 17, 15, 12, 7, \quad 28, \ldots$

Sort the output and count frequency

Takes $O(n^2/\log^2 n)$ time (step 3) and O(n) space (step 4).

• The best sorting algorithms require $O(n \log n)$ time and O(n) space

 \Rightarrow Generate representations of g in-order and count as we go.

- The *length* ℓ of a representation g gives a good estimate for the size of primes needed: g/ℓ; but g's representations can come in any length:
 - Constructing all primes at the start is time-optimal but takes $O(n/\log n)$ space;
 - Constructing primes "on the fly" is space-optimal but slow.

⇒ Use different behavior depending on what kind of representation we're counting. Give each possible length an object instance — each object contains information about primes contained in the summand.

- Initialize each object with the gleeful representation starting at $p_1 = 2$.
- **2** Insert all objects into a priority queue based on the value g.
- Iteratively dequeue each object, increment the histogram for g, update the object value, then queue the object back into the priority queue.

$$2+3+5+7 = 17 3+5+7+11 = 26$$

Theorem (Sorenson-W.,'25)

The above algorithm takes $O(x \log x)$ arithmetic operations and $x^{3/5+o(1)}$ space to compute the histogram h up to x > 0.

Tabulating Gleefuls up to 25

Timestep	1	2	3	4	g	f(g)
1	2	5	10	17	2	1
2	3	5	10	17	3	1
3	5	(5)	10	17	5	2
4	\bigcirc	8	10	17	7	1
5	11	8	10	17	8	1
6	11	12	(10)	17	10	1
7	(11)	12	15	17	11	1
8	13	(12)	15	17	12	1
9	(13)	18	15	17	13	1
10	17	18	(15)	17	15	1
11	(17)	18	23	(17)	17	2
12	19	(18)	23	26	18	1
13	(19)	24	23		19	1
14	(23)	24	23)		23	2
15	29	(24)	31		24	1

A Fishy Histogram for $n = 10^{12}$

Count	Observed	Count	$X \sim \operatorname{Pois}(\lambda = \log 2)$
0	502159842109	0	50000000000
1	347327858123	1	346573590279
2	118662285846	2	120113253479
3	26721935372	3	27752054332
4	4465680602	4	4809064553
5	591227093	5	666677907
6	64644512	6	77017651
7	6004622	7	7626366
8	484875	8	660774
9	34610	9	50890
10	2108	10	3527
11	124	11	222
12	4	12	12

Back to Moser

In the spirit of Cramér's model for the distribution for primes:

- Is f(n) = 1 infinitely often? Yes,
- Is f(n) = k solvable for every integer k ≥ 0?
 Yes,
- O Does the set of numbers n such that f(n) = k have positive density for every integer k ≥ 0?
 Yes, with density

$$\operatorname{Leb}_{\mathbb{N}}\left(f^{-1}(k)\right) = \frac{(\log 2)^k}{2 \cdot k!},$$

• Is
$$\limsup_{n \to \infty} f(n) = \infty$$
?
Yes

Average Representations

Future Work

f(n)	Min <i>n</i>
1	2
2	5
3	41
4	1151
5	311
6	34421
7	218918
8	3634531
9	48205429
10	1798467197
11	12941709050
12	166400805323
13	6123584726269

Table: OEIS A054859. f(n) = 13 from G. Resta (2020)

THANK YOU!

Eleanor Waiss ewaiss@butler.edu

A Gleeful Algorithm

Butler University

This work is supported in part by a grant from the Holcomb Awards Committee.