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Chapter 1

The Lebesgue Integral and L
1

1.1 Countable and Uncountable Infinity

Key Concepts

1. Cantor’s definition of countable and uncountable sets of real numbers.

2. The Countable Union Theorem

3. Diagonalization proof that [0, 1] is uncountable.

Definitions. A (nonempty) set S is:

• countable when its elements can be arranged in a sequence; that is, when S is of the form S = {s1, s2, s3, s4, . . .}.

• uncountable when it is not countable.

Exercises

1. Use the definition to prove Z = {. . .− 3,−2,−1, 0, 1, 2, 3, . . .} is countable.

2. Use the definition to prove the cardinality of Q ∩ [0, 1] (the set of rationals between 0 and 1) is countably infinite.
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3. Prove [0, 1] is uncountable.

4. Prove the Countable Union Theorem: A countable union of countable sets is countable. (CUCSC)

5. Prove the set of rationals Q is countable. Use the Countable Union Theorem.
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1.2 Measures of Intervals and Measure Zero Sets

Definitions.

• The Lebesgue measure m(I) of an interval I is its length.

• A Measure Zero Set: m(S) = 0 when S can be covered with a sequence of open intervals I1, I2, I3, . . . whose bounded total measure
∞
∑

n=1
m(In) is arbitrarily small.

Example: S = {−3, 7, 31} has measure zero.

Proof: Given ε > 0, the intervals I1 = (−3 − ε/6,−3 + ε/6), I2 = (7 − ε/6, 7 + ε/6), and I3 = (31 − ε/6, 31 + ε/6) form an open

cover (do you see why S ⊆ I1 ∪ I2 ∪ I3?) with bounded total measure equal to m(I1) +m(I2) +m(I3) = ε/3 + ε/3 + ε/3 = ε (do

you see why?).

Example: N = {1, 2, 3, . . .} has measure zero.

Proof: Given ε > 0, the intervals In = (n − ε/2n+1, n + ε/2n+1), n ∈ N, form an open cover (do you see why N ⊆ ⋃

In?) with

bounded total measure equal to
∞
∑

n=1
m(In) =

∞
∑

n=1
ε/2n = ε (do you see why?).

Exercises. 1. Find the length of each interval I:

1. I = [−7, 31)

2. I = (−π,
√

2)

3. I = (0,∞)

2. Prove each set has measure zero.

1. {−6,−
√

2, 3, 31, e, π}

2. {2, 4, 6, 8, 10, . . .}

3. {. . . ,−4,−2, 0, 2, 4, . . .}

4. Any countable set S.
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1.3 Step Functions and their Lebesgue Integrals

Definitions. A step function:
n
∑

j=1
cj · XIj

(x), where cj is a real constant and XI1(x) is a characteristic function of a bounded interval Ij .

• The Lebesgue integral of a step function:
∞
∫

−∞

n
∑

j=1
cj · XIj

(x) dx =
n
∑

j=1
cj ·m(Ij ).

Exercises.

1. Why isn’t h(x) = 10 · X(1,5] − 6 · X[4,∞) a step function?

2. Graph the functions. Then find their Lebesgue integral, showing work:

(a) f(x) = 10 · X(1,5] + 6 · X(5,10] + 5 · X(10,15) + 3 · X(15,25) + X(30,40]

(b) g(x) = −10 · X(
√

2,5] − 6 · X(5,10] − 5 · X(10,15) − 3 · X(15,25) − X(30,40]

3. Use the definitions to prove these theorems:

(a) Theorem: If f is a step function, then so is af (where a is any real constant) and
∫

a · f = a
∫

f .

(b) Theorem: If f and g are step functions, then so is af + bg (where a, b ∈ R) and
∫

(a · f + b · g) = a
∫

f + b
∫

g.
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1.4 Limits

Key Concepts

1. limit of a sequence - rigorously define lim
n→∞

sn = L for a sequence of (real) numbers sn.

2. limit of a function - rigorously define lim
x→a

f(x) = L for a (real) function f .

3. pointwise limit of a function sequence - rigorously define lim
n→∞

fn(x) = f(x) for a sequence of (real) functions fn(x).

1.4.1 Three Types of Limits

Definitions

1. The limit of a sequence {sn}. lim
n→∞

sn = L means: given ε > 0, there exists N > 0 such that |sn − L| < ε whenever n > N .

2. The limit of a function f as x approaches c. lim
x→c

f(x) = L means: for every ε > 0, there exists δ > 0 such that 0 < |x− c| < δ

implies |f(x) − L| < ε.

3. The pointwise limit of a function sequence. For a specific x, lim
n→∞

fn(x) = f(x) means the sequence {fn(x)} approaches the

value f(x) in this way: given ε > 0, there exists N > 0 such that |fn(x) − f(x)| < ε whenever n > N . When this happens on a

domain set D of x’s, then the limit values f(x) define a function f onD called the pointwise limit of the fn’s. Here, lim
n→∞

fn = f .

1.4.2 Working with the definitions

1. Prove lim
n→∞

2

n + 6
= 0.

2. Prove lim
x→−5

(4x+ 3) = −17.

3. Apply the restriction technique to prove lim
x→1

(x2 + x) = 2.
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4. Define a sequence of functions on the interval [0, 1].

Let f1(x) =

{

0 if x ∈ [0, 1
2
)

1/2 if x ∈ [ 12 , 1],
f2(x) =



























0 if x ∈ [0, 1
4
)

1/4 if x ∈ [ 1
4
, 1

2
)

1/2 if x ∈ [ 12 ,
3
4)

3/4 if x ∈ [ 34 , 1],

etc.

The nth function in the sequence is piecewise defined on 2n intervals of equal width 1/2n, and it outputs the range value k/2n on

the kth interval, where k runs from 0 to 2n − 1.

A. Graph, on the same set of axes, f(x) = x along with f1(x), f2(x) and f3(x).

B. Examine x = 1/3. Find lim
n→∞

fn(1
3
), any way you can. Can you give an ε, δ proof of your result?

B. It turns out, for any x ∈ [0, 1], that |fn(x) − x| < 1/2n. [Can you prove this fact?] Use it to prove lim
n→∞

fn(x) = x for any

x ∈ [0, 1]. Thus f(x) = x can be thought of as the pointwise limit of the sequence of functions {fn(x)}∞n=0.
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1.5 Definition of L1

Key Concepts

1. All integrals in this section refer to the LEBESGUE integral–therefore, we need to see how the Lebesgue integral is defined.

2. L0 functions and their integrals - functions with finite Lebesgue integral that are the a.e. limit of a nondecreasing sequence of step

functions form a collection L0 (pronounced “L-naught”).

3. L1 functions and their integrals - the Lebesgue-integrable functions form a linear space L1

4. The standard construction - used to form a sequence of nondecreasing step functions that a.e. approaches a given function f .

Definitions

1. Suppose {φn(x)} is a nondecreasing sequence of step functions that converges pointwise almost everywhere to a function f(x).

Then
∫

f ≡ lim
n→∞

∫

φn. When this Lebesgue integral is finite, f is in the set L0.

2. When a continuousf equals zero off an interval [a, b], the standard construction automatically defines a sequence of nondecreasing

step functions φn =
2n
∑

k=1

ckXIk
. It uses a “halving technique”: divide [a, b] into 2n subintervals, doubling the number of subinter-

vals for each subsequent function. The subintervals are Ik = [a+ (b− a)(k − 1)/2n, a+ (b − a)k/2n), and ck is the minimum

value of f on Ik (but also including the right endpoint). We always get lim
n→∞

φn = f . We write lim
n→∞

∫

φn =
∫

f =
∫ b

a f(x) dx.

3. The space L1 of Lebesgue integrable functions consists of any function f of the form f = g − h, where g and h are in L0. Its

Lebesgue integral is
∫

f =
∫

g −
∫

h.

4. Throughout, these (Daniell-Riesz) definitions of the integral turn out to be well-defined; e.g., no matter what nondecreasing a.e.

convergent sequence of step functions is used, the L0 definition
∫

f ≡ lim
n→∞

∫

φn always gives the same Lebesgue integral for f .

Examples

1. To find
∫ 1

0
x2 dx, use the standard construction to form φn(x) =

2n
∑

k=1

(

k−1
2n

)2X[ k−1
2n , k

2n )(x). Reindexing, simplifying, and using a

well known closed form for the sum of squares gives
∫ 1

0 x
2 dx = lim

n→∞

∫

φn = lim
n→∞

1
23n

2n−1
∑

k=0

k2 = lim
n→∞

1
23n

(2n−1)2n(2·(2n−1)+1)
6 .

Taking the ratio of the highest-power coefficients evaluates the limit, and
∫ 1

0
x2 dx = 2

6
= 1

3
.

2. If f = g − h with g, h ∈ L0 and
∫

g = π and
∫

h = ln 2, what can you say about f?

Solution: We can say f ∈ L1 by definition, and
∫

f = π − ln 2.

Exercises

1. Find
∫ 1

0
x2 + x dx.
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2. Find
∫ 1

−1
x2 dx.

3. Find
∫ b

a
x+ 5 dx, where a, b ∈ R.

4. Determine as a limit of step function integrals, but do not evaluate,
∫ π/2

0
sinx dx.

5. If g, h ∈ L0 with
∫

g = 4/5 and
∫

h = 3/4, then what is
∫

(g − h)?

6. a) Find
∫

f , where f =
11
∑

k=0

1
2k X[k,k+1)

b) Say why f ∈ L0 and show
∫

f = 2, where f =
∞
∑

k=0

1
2kX[k,k+1)

10





Practice Test on Chapter 1

1. a. Prove, using the definition, that lim
x→3

x2 + x = 12.

b. Is f(x) = x2 + x continuous at 3? Support your answer.

2. Prove, using the definition, that lim
n→∞

x2

nx3 + 1
= 0 for all real values x.

3. a. Write as a sequence the elements in S = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .} to show the set is countable.

b. Write as a sequence the elements in the Cartesian product set N × N = {(m, n) : m, n ∈ N}, to show the set is countable. Here,

N = {1, 2, 3, . . .}.

4. Recall the Cantor set is formed from a step-by-step process on the interval [0, 1], where each step removes 2n open intervals that form

the middle third of any interval remaining after the nth step, where n = 0, 1, 2, . . .. The points that are never removed after an infinite

number of such steps form the Cantor set. Prove the Cantor set has measure zero. You may use the fact about Lebesgue measure on

intervals: that m(A) +m(B) = m(A ∪B) for any two disjoint intervalsA and B.

5. Evaluate the step function integral
∫

(2π · X[−4,4) − 3π · X[−
√

2,
√

2) + 4π · X(−1,1)).

6. Using the definition of the Lebesgue integral for a function in L0, find the Lebesgue integral
∫

f when

f =
∑∞

n=1(3/4)nX[n,n+1). Show all work. (You should not use the standard construction on this problem.)

7. Use the standard construction to evaluate the Lebesgue integral
∫ 4

1
(x2 + 1) dx, explicitly giving the general formula for ϕn(x) that

forms the sequence of step functions you use. You may reference the formulas on the classroom board.

8. If h = f − g is in L1 but not in L0, and both f and g are in L0 with
∫

f = 7 and
∫

g = −12.5, what is
∫

h?

BONUS! Is the rational number 162/242 = .6694214876 in the Cantor set? Why or why not?
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Chapter 2

The Riemann Integral and Properties of the

Lebesgue Integral

2.1 The Riemann Integral

Key Concepts

1. supremum and infimum - the least upper bound and the greatest lower bound of a real set

2. the Lower and Upper Riemann Integral - supremum of Lower Riemann Sums and infimum of Upper Riemann Sums of a bounded

function1 on an interval

3. the Riemann Integral - exists when the Lower and Upper Riemann Integrals agree, and then it equals that value (and is the definite

integral you studied in calculus)

4. Lebesgue vs. Riemann - why the Lebesgue integral is better and how their values compare

Definitions. For a real valued set A, the (real) value supA (called the supremum) must be an upper bound for A and, if M is any

other upper bound for A, then supA < M . In the same way, infA (the infimum) must be a lower bound for A and, if M is any other

lower bound for A, then infA >M .

The Lower Riemann Integral of f on [a, b], denoted
∫ b

a—
f , is the supremum of the set of all integrals of step functions bounded above

by f on [a, b]. In other words,
b
∫

a—

f = sup {
∫

φ : φ is a step function, and φ ≤ f}.

Similarly, the Upper Riemann Integral of f on [a, b], denoted
∫ b

—

a
f , is the infimum of the set of all integrals of step functions bounded

below by f on [a, b]. In other words,
b
—
∫

a

f = inf {
∫

ψ : ψ is a step function, and f ≤ ψ}.

When the Lower Riemann Integral for f equals its Upper Riemann Integral, then the Riemann integral R-
∫ b

a f(x) dx exists and

equals that common value. Of course that also means that f is NOT Riemann integrable when the Lower and Upper Integrals do not

agree.

Example. For a simple example, consider the Dirichlet function D(x) =

{

1 if x ∈ R\Q

0 if x ∈ Q
for x ∈ [0, 1]. D(x) has a lower

Riemann integral equal to 0 and an upper Riemann integral equal to 1, and hence R-
∫ 1

0 D(x) dx = DNE.

1Throughout this discussion of the Riemann integral of a function f over an interval (a, b), it will always be assumed f is bounded on the interval.
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Riemann himself (in the 1860s) knew his definition failed to integrate a large number of important functions. Around 1900, Lebesgue

made precise a simple condition that determined when a (bounded) function had a well-defined Riemann integral and when it did not.

That description is in the following theorem.

The Riemann-Lebesgue Theorem: A bounded function f is Riemann integrable over an interval [a, b] if and only if the points of

discontinuity of f on [a, b] form a set of measure zero. In this case, the Riemann integral equals Lebesgue’s: R-
∫ b

a
f dx =

∫ b

a
fdx.

Darboux’s Theorem: Suppose {φn} is a nondecreasing sequence of step functions and {ψn} is a nonincreasing sequence of step

functions, where φn ≤ f ≤ ψn for every n and where lim
n→∞

∫ b

a
ψn − φn = 0. Then

1. The sequences
∫ b

a φn and
∫ b

a ψn converge to the same limit.

2. The function f is Riemann integrable.

3. We may calculate the Riemann integral of f in terms of the integrals of the step-function sequences:

lim
n→∞

b
∫

a

ψn(x) dx = R-
b
∫

a

f(x) dx = lim
n→∞

b
∫

a

φn(x) dx.

We can use the Standard Construction from Chapter 1, but more generally using the infimum over a subinterval instead of the mini-

mum, to construct the step function sequences used in Darboux’s Theorem. In fact, using the supremum also constructs a nonincreasing

sequence.

The Standard Construction. When attempting to form either the Riemann integral or the Lebesgue integral
∫ b

a f for a function f ∈ L0,

the following standard construction can be useful. Define a nondecreasing sequence of step functions {φn}, where

1. Each φn is piecewise defined over [a, b] using subintervals Ik = [a+ (b− a)(k − 1)/2n, a+ (b− a)k/2n), k = 1, 2, 3, . . . , 2n.

2. For x ∈ Ik, the step function’s value is the infimum of f over the subinterval. In short, φn(x) ≡ inf{f(t) : t ∈ Ik}.2

3. In summary, φn(x) ≡
2n
∑

k=1

mk · XIk
(x), where mk = inf{f(t) : t ∈ Ik} and Ik is as in part 1.

4. The “dual nonincreasing sequence” is ψn(x) ≡
2n
∑

k=1

Mk · XIk
(x), where Mk = sup{f(t) : t ∈ Ik} and Ik is as in part 1.

Example. 1. Use the standard construction to determine a nondecreasing step function sequence {φn} that converges to f(x) = 2x+ 5

on [4, 10]. Also find the dual sequence {ψn}.

Solution: Define φn and ψn on 2n equal-sized subintervals of [4, 10] as φn(x) = 2·(4+6(k−1)/2n)+5 and ψn(x) = 2·(4+6k/2n)+5

for x in the kth subinterval with left endpoint 4 + 6(k − 1)/2n and right endpoint 4 + 6k/2n, where k = 1, 2, . . . , 2n.

2. Now evaluate lim
n→∞

10
∫

4

ψn(x) dx and lim
n→∞

10
∫

4

φn(x) dx to show f(x) = 2x + 5 is Riemann integrable. What is the value of

R-
10
∫

4

2x+ 5 dx? Justify your answer using a theorem in this section.

Solution: Using the definition of the Lebesgue integral of step functions from Chapter 1,

lim
n→∞

10
∫

4

φn(x) dx = lim
n→∞

2n
∑

k=1

[2 · (4 +6(k− 1)/2n)+ 5] · (6/2n) = lim
n→∞

6
2n (13 · 2n + 12

2n · (2n−1)·2n

2 ) = 6(13+ 12
2 ) = 114. Similarly,

lim
n→∞

10
∫

4

ψn(x) dx = lim
n→∞

2n
∑

k=1

[2 · (4 + 6k/2n) + 5] · (6/2n) = lim
n→∞

6
2n (13 · 2n + 12

2n · (2n·(2n+1)
2 ) = 6(13 + 12

2 ) = 114.

Since the limits agree, Darboux’s Theorem guarantees the Riemann integral exists and is the common limit: R-
10
∫

4

2x+ 5 dx = 114.

2Remember: as we study Riemann integrals, we assume f is bounded on [a, b], and so the infima will exist.
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Exercises.

1. Find the step-function sequences {φn} and {ψn} from the standard construction and its dual sequence for the function f(x) = 3x+1

on the interval [0, 2]. Note f is continuous and therefore (as the Riemann-Lebesgue Theorem implies) Riemann integrable. Evaluate
∫

φn and
∫

ψn as closed-form expressions in n, and show lim
n→∞

∫

φn = lim
n→∞

∫

ψn. Then use Darboux’s theorem to find the value of

R-
∫ 2

0
3x+ 1 dx.

2. Repeat the last exercise, but use f(x) = x2 on the interval [1, 2].

3. Determine points of discontinuity for f(x) = (x− 1)(x2 + 5x+ 4)/(x2 − 1). What does the Riemann-Lebesgue theorem say about

f? Use that theorem to find R-
∫ 10

−10
f(x) dx.
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2.2 Properties of the Lebesgue Integral

Key Concepts

1. monotone sequence of functions

2. limits of integrals When can you pass a limit through an integral and get an equal value? When using the Lebesgue integral, the

Monotone Convergence Theorem provides one setting. But when using the Riemann integral, equality is not guaranteed.

3. the truncation method create a monotone sequence approaching any nonnegative function f by truncating f at x = n.

The Monotone Convergence Theorem (Beppo Levi): Assume {fn} is a monotone sequence of functions in L1, where the integrals

collectively satisfy |
∫

fn| ≤M for some finite upper boundM . Then the sequence {fn} converges a.e. to a function f in L1, and

∫

lim
n→∞

fn =
∫

f = lim
n→∞

∫

fn.

Examples. 1. Use the monotone convergence theorem to find
∫ ∞
0

e−x dx.

Solution: Truncating a nonnegative function at x = n to form a sequence function fn always produces a nondecreasing (monotone)

sequence, because fn(x) = fn+1(x) for x ≤ n or x > n+1 (where both functions equal 0), and fn(x) = 0 ≤ fn+1(x) for x ∈ (n, n+1].

This truncation method applies here: set fn(x) = e−x for x ∈ [0, n] and fn(x) = 0 for x > n. (Equivalently, fn(x) = X[0,n](x) ·e−x.)

By the Monotone Convergence Theorem,
∫ ∞
0

e−x dx =
∫

lim
n→∞

fn = lim
n→∞

∫ n

0
e−x dx = lim

n→∞
−e−x

∣

∣

n

0
= lim

n→∞
1 − e−n = 1.

2. Enumerate the rationals on [0, 1], writing them as a1, a2, . . .. Define fn(x) =

{

1 x = a1, a2, . . . , an

0 elsewise
What does the Monotone

Convergence Theorem say about the integrals of this function sequence? Does that result hold if the Riemann integral is used instead of

Lebesgue?

Solution: The sequence fn(x) is monotone on [0, 1] because fn(x) = fn+1(x) for all x except at x = an+1, where fn(an+1) = 0 <

1 = fn+1(an+1). By the Monotone Convergence Theorem,
∫

f ≡
∫

lim
n→∞

fn = lim
n→∞

∫

fn = lim
n→∞

∫

0 = 0, because each fn equals

zero a.e. (except at a finite number of rational values). Of course, the limit function f(x) = lim
n→∞

fn(x) is the Dirichlet function, because

it equals 1 at each rational and 0 at each irrational. The result does not hold if we were to use the Riemann integral instead. In fact, we

have seen that the Dirichlet function is not Riemann integrable, even though the Riemann integral of each fn is (each fn is continuous

except at a finite number of rational values, hence is Riemann integrable by the Riemann-Lebesgue Theorem). It is then easy to realize

that R-
∫

fn = 0, but R-
∫

f 6= 0 = lim
n→∞

R-
∫

fn.

Other Important Theorems. 1. Riemann integrable functions f often have Riemann (definite) integrals found using the Fundamental

Theorem of Calculus, by finding the antiderivative and evaluating at the integrand endpoints. Any such function is also automatically

Lebesgue integrable, and so the Fundamental Theorem applies the same way to find the Lebesgue integral of f . Actually, there is a

slightly more general version of the Fundamental Theorem for the Lebesgue integral:

The L1 Fundamental Theorem of Calculus: For f in L1[a, b], define F (x) =
∫ x

a
f(t) dt for x ∈ [a, b], and F (x) = 0 elsewhere.

A. Then F ′(x) = f(x) at a point x ∈ [a, b] where f is continuous.3

B. If f is continuous on [a, b] and F is now any antiderivative of f (i.e., F ′(x) = f(x) on [a, b]), then
∫ b

a f(x) dx = F (b) − F (a).

For example,
∫ π

0
sinx dx is easily evaluated as

∫ π

0
sinx dx = − cos x

∣

∣

π

0
= cos 0 − cos π = 2. Of course, when finding antiderivatives,

just as in Calculus, techniques such as u-substitution are helpful and important.

3The derivative and continuity at the interval’s endpoints a and b are understood to be one-sided concepts. For example, F ′(a) refers to the right-hand derivative,

where the limit of the difference quotient (F (a + h) − F (a))/h is taken by considering only values of h that are positive and tending toward 0. Similarly, continuity of

f at b means, given ε > 0, there exists δ such that |f(x) − f(b)| < ε whenever 0 ≤ b − x < δ (in other words, we consider only x values to the left of b).
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2. Integration by Parts: Assume the functions u and v are in L1[a, b] and the functions U and V are defined, for any x ∈ [a, b], as

U(x) =
x
∫

a

u(t) dt+ C1 and V (x) =
x
∫

a

v(t) dt+ C2, where C1 and C2 are arbitrary constants. Then
b
∫

a

U v = U · V
∣

∣

b

a
−

b
∫

a

V u.

For example,
∫ 2

1 x lnx dx is easily evaluated using U(x) = lnx and v(x) = x.

Exercises.

1. Use the Fundamental Theorem and/or Integration by Parts to evaluate the Lebesgue integrals:

(a)
∫ 1

0
(2x+ 5)5 dx

(b)
∫ π

0 x sinx dx

2. Apply the Monotone Convergence Theorem to evaluate
∫ ∞
2 x−2 dx.
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2.3 The Lebesgue Dominated Convergence Theorem

Key Concepts

1. dominated sequence of functions A sequence {fn} is dominated by a function g ∈ L1 when |fn| ≤ g for all n.

2. limits of integrals When can you pass a limit through an integral and get an equal value? When using the Lebesgue integral,

the Lebesgue Dominated Convergence Theorem (LDCT) provides a setting in addition to the Monotone Convergence Theorem

(discussed in the last section). But when using the Riemann integral, equality is not guaranteed.

The Lebesgue Dominated Convergence Theorem: Suppose {fn} is a sequence of functions in L1 that converges almost everywhere

to a function f . Also suppose the sequence functions are dominated by an integrable function g, in the sense that |fn| ≤ g for all n,

where g ∈ L1. Then f ∈ L1 and its Lebesgue integral can be evaluated by passing the limit through the integral:

lim
n→∞

∫

fn =
∫

lim
n→∞

fn =
∫

f .

Example.

Write lim
n→∞

∫ n

1 cos(x−1)/x2 dx as a Lebesgue integral of an integrable function, without a limit sign. Find the integral’s value.

Solution: Define fn(x) = X[1,n)(x) cos(x−1)/x2, which is integrable because it is continuous a.e. and dominated by the inte-

grable function g(x) = x−2 · X[0,∞)(x). By the LDCT, lim
n→∞

∫ n

1
cos(x−1)/x2 dx =

∫ ∞
1

cos(x−1)/x2 dx. Substituting u = x−1,

lim
n→∞

∫ 1

1/n
cos u du = lim

n→∞
sinu

∣

∣

1

1/n
= sin 1 − sin 0 = sin 1.

Exercises. 1. Use either the Monotone Convergence Theorem or the Lebesgue Dominated Convergence Theorem (LDCT) to evaluate

lim
n→∞

∫ 1

0
(1 + x/n)−2n cos(x/n) dx. Make sure you justify your use of your choice of Theorem.

(Hint: lim
x→∞

(1 + x/n)−n = e−2x.)

2. Use the LDCT to evaluate
∫ ∞
0 e−x cos x dx. Make sure you properly justify use of the theorem.
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2.4 Fourier Series

Key Concepts

1. Trigonometric Series A finite or infinite sum of terms that are constant multiples of sinnx or cos nx, n = 0, 1, 2, . . .. Such series

naturally represent a function periodic with period 2π, and so they are naturally studied over the interval [−π, π] and repeated

periodically over other intervals of length 2π..

2. Series Coefficients In a series, the constant multipliers of the trigonometric functions.

3. Bounded Variation f is of bounded variation when it can be expressed as the difference g − h of two nondecreasing bounded

functions.

4. Convergence of Fourier Series When does a Fourier series of a function converge, and to what value does it converge?

Definitions.

1. The (classical) Fourier series is of the form a0 +
∞
∑

n=1
an cosnx + bn sinnx and is often called a trigonometric series because its

components are sine and cosine functions. Writing a function f(x) as a Fourier series gives insights into the function’s behavior and is

important to describe many physical properties in the world around us.

2. There are formulas for a function’s Fourier coefficients a0 (the constant coefficient), an and bn, for n = 1, 2, 3, . . .. These are, for a

function f : a0 = 1
2π

π
∫

−π

f(t) dt, an = 1
π

π
∫

−π

f(t) cos nt dt, and bn = 1
π

π
∫

−π

f(t) sin nt dt.

3. The (nth) Dirichlet kernel is the function Dn(x) = 1/2 +
n
∑

k=1

cos kx, x ∈ R. The Dirichlet-Jordan Theorem then says: When

f ∈ L1(−π, π) is periodic with period 2π and, for x ∈ R, has bounded variation on an interval [x− h, x+ h], where 0 < h ≤ π, then

the Fourier series of f converges at x to

lim
t→0+

(f(x + t) + f(x − t))/2.

Example. Find the Fourier series for f(x) = x, π < x ≤ π (and where f(x) is repeated periodically over other intervals of length 2π).

Solution: a0 = 1
2π

π
∫

−π

t dt = 1
2π

t2

2

∣

∣

π

−π
= 0, an = 1

π

π
∫

−π

t cosnt dt = 1
nπ

(t sinnt + 1
n

cos nt)
∣

∣

π

−π
= 0, and

bn = 1
π

π
∫

−π

t sinnt dt = 1
nπ (−t cos nt+ 1

n sinnt)
∣

∣

π

−π
= 2(−1)n+1

n for n = 1, 2, 3, . . . .

From the Fourier series formula, the series is then 2 sinx− sin 2x+ 2
3 sin 3x− . . . = 2

∞
∑

n=1

(−1)n+1

n sinnx.

Exercises.

1. Find the Fourier series for f(x) = x2 + 1, x ∈ (−π, π].
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2. Show that f(x) = x2 + 1, x ∈ (−π, π] satisfies the hypotheses of the Dirichlet-Jordan Theorem. In other words, show f(x) =

x2 + 1 ∈ L1(−π, π) and is of bounded variation.

3. What does the Fourier series (from Exercise 1, above) for f(x) = x2 + 1, x ∈ (−π, π] converge to at x = 0? What about at x = π?

4. From the Example and the answer to Exercise 1, above, what can you say is the Fourier series for f(x) = x2 + x+ 1, x ∈ (−π, π]?
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Practice Test on Chapter 2

1. Prove Theorem 2.2.4: If f ∈ L1, then so is |f |, and |
∫

f | ≤
∫

|f |.

2. Use the Monotone Convergence Theorem, u-substitution, and the Fundamental Theorem of Calculus to evaluate
∫ 0

−∞
x

(1 + x2)2
dx.

Make sure you justify the use of the Monotone Convergence Theorem.

3. This problem studies the Riemann integral of f(x) = x2 + 1.

a. Give a simple property of this function that guarantees its Riemann integral from 0 to 2 exists and is finite.

b. Use the standard construction to evaluate the Riemann integral R-
∫ 2

0 x2 + 1 dx, explicitly giving ϕn(x) and ψn(x) that form the

sequences of step functions you use, and then evaluating limn→∞
∫

ϕn(x) dx. (You do NOT need to evaluate the limit of the integrals

of the dual sequence ψn.)

4. Use the Lebesgue Dominated Convergence Theorem and integration by parts twice to evaluate
∫ ∞
0

2e−x cos x dx. Make sure you

justify the use of the theorem.

5.Evaluate, justifying each step, the following limit: lim
n→∞

∫ ∞
0

(1 + nx2)(1 + x2)−n dx.

6. Find the Fourier series for f(x) = |5x| (as it is defined on the interval (−π, π] and extended periodically with period 2π off of this

interval).

20
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Chapter 3

Function Spaces

3.1 The spaces Lp

Key Concepts

1. metric space - a set with a concept of distance (norm) satisfying certain properties

2. Banach (Hilbert) spaces - normed vector spaces that are complete (with an inner product), specifically the Lp spaces

3. nonmeasurable sets - and properties of measurability

4. measurable functions and their connection to measurable sets

5. the mid function and its application to proofs on Lp spaces

6. Hölder’s Inequality and the Riesz-Fischer Theorem

3.1.1 Measurable Functions

A Nonmeasurable Set—the Vitali Set (See [3, p. 127]) The Lebesgue measure of a set requires the following three properties:

1. The integral of a characteristic function
∫

XA must equal m(A) for any set A

2. Countably Additive: For any two disjoint sets, m(A) + m(B) = m(A ∪ B); in fact, we require such a property holds for any

countable number of disjoint sets.

3. Translation Invariance: For any set A, m(A) = m(A + t) for a set A and real number t, where A + t is the translation set of A,

defined as A + t = {a+ t : a ∈ A}.

If a set breaks any one of these, the set is nonmeasurable. Its characteristic function XA will then not behave well in terms of the

integral; it is a nonmeasurable function. An example is the Vitali set V :

1. Partition the interval [0, 1] into an uncountable number of subsets

2. Two numbers v and w in [0, 1] get into the same subset when v −w is a rational number. (e.g., Q ∩ [0, 1] form one subset.)

3. Every value in [0, 1] is in exactly one of the subsets.

4. Choose exactly one element from each of these subsets, and collect the choices into a set V .

5. This set is not measurable!
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To see why there is a problem:

1. List the rationals in [0, 1] as s1, s2, s3, . . . .

2. Take any one of these numbers sj and form the set Sj = {s⊕ sj : s ∈ V }, where

s⊕ sj =

{

s+ sj if s+ sj ≤ 1

s+ sj − 1 if s+ sj > 1.

3. The modular sum makes 0 ≤ s+ sj ≤ 1, and so each Sj is a subset of [0, 1].

4. Each x ∈ [0, 1] is in exactly one Sj . (Can you prove this?)

Putting the previous points together implies

[0, 1] =
∞∪

j=1
Sj

for disjoint sets Sj . Each set Sj is a translation set of V , and so by translation invariance we should have m(Sj) = m(V ), j =

1, 2, 3, . . . . Then by countable additivity, we should have

1 = m([0, 1]) = m(
∞∪

j=1
Sj) =

∞
∑

j=1
m(Sj) =

∞
∑

j=1
m(V ).

No matter what measure we might assign to m(V ), we have problems. If m(V ) = 0, then this equation would imply 1 = 0. If m(V )

is a positive or negative value, then the summation does not converge to a finite number, and so there would be no way for it to equal

1. It’s impossible for the set V to have a correctly assigned measure. V is a nonmeasurable set. And then the characteristic function

f(x) = XV (x) is nonmeasurable, because
∫

XV (x) dx = m(V ) does not exist. Since m(V ) is badly behaved, so is XV . �

Our goal this chapter to is to consider spaces of functions, specifically measurable functions:

Definition: A function is measurable if and only if for every measurable set S, the preimage f−1(S) is a measurable set.

Now we see the problem: the Vitali set V was the preimage of T = {1} under the function XV . T is measurable (it has measure

zero), so f−1(T ) should be measurable, but it isn’t. A function f that has this problem will not integrate correctly. These badly behaved

functions are the nonmeasurable functions.

Which functions are measurable?

Remember that we previously defined the space L0 as

L0 = {f : there exists a sequence of step functions φn such that φn → f a.e. and

∫

f = lim

∫

φn <∞},

and then L1 as the set of Lebesgue integral functions, i.e. L1 = {f : f = g − h with g, h ∈ L0}.

Now we want to characterize this set in terms of measurable functions. From the previous section, we see that not even all of the

characteristic functions are measurable. How do we determine which functions are measurable, other than the definition?

Definition: For real valued functions f and g with g > 0, the function mid{−g, f, g} is defined as having the unique range value

chosen from the three output values −g, f, g (not necessarily distinct) that is between the other two.

Definition: A real function f is measurable if and only if mid{−g, f, g} ∈ L1 for every nonnegative function g ∈ L1.
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Exercise. Use the mid function to prove the following properties.

Theorem: For any real-valued function f :

1. If f is integrable, then f is measurable.

2. If f is continuous, then f is measurable.

3. If f is measurable, then so is |f |.

4. If f is measurable, then so is |f |p ∀p ∈ N.

5. If f is measurable and |f | ≤ g for g integrable, then f is integrable.

6. If |f | is integrable, then so is f .
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3.1.2 Definition of L
p

The space L1 has several properties:

1. It is a vector space - if you add two functions in L1, or multiply by a scalar, you stay in L1.

2. It is a metric space - the norm given by ‖f‖ =
∫

|f | gives a sense of size (similar to absolute value) for functions. Similarly,

‖f − g‖ is the distance between two functions.

3. It is a Banach space, because in addition to the first two properties, it is complete: for any sequence of functions fn belonging to

L1, if ‖fn − f‖ → 0, then f ∈ L1. This means you can’t “leave” the space through limits of sequences of functions.

Definition: The space Lp for real p ≥ 1 is defined as

Lp = {f : f is measurable and ‖f‖p =

(
∫

|f |p
)1/p

<∞}.

Lp spaces make no distinction between two functions that are equal almost everywhere. All Lp spaces are Banach spaces; L2 is

additionally a Hilbert space, because its norm is given by an inner product, where 〈f, g〉 =
∫

fg. (See next section for Hilbert space

properties.)

Exercise. This is a different definition of L1 than before. Can you prove that these definitions are equivalent?
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3.1.3 L
p spaces are complete

Example: ∀n ∈ N, define fn(x) = e−x, where 0 ≤ x ≤ n (and f = 0 otherwise). Is fn measurable for each n? What are the L1 norms

of fn? Does fn converge as a sequence of functions to a function in L1 norm (not pointwise)? What is the limit, if so? Does this always

work?

Lemma 3.1.2: Let fk ∈ Lp for k = 1, 2, 3, . . . . If
∑‖fk‖ converges as a real-valued series, then

∑

fk converges to a function g in

Lp. Moreover,
∑

fk(x) converges to g(x) pointwise for almost all x.

The Riesz-Fischer theorem: If {fn} is a Cauchy sequence of functions in an Lp space with p ≥ 1 (so that, given ε > 0, there exists N

so that ‖fn − fm‖p < ε whenever m, n ≥ N ), then fn converges to a function f ∈ Lp in the Lp-norm limit.
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3.2 Hilbert Space Properties of L2 and `2

Key Concepts

Definition. The inner product of two functions f and g in L2(a, b) is 〈f, g〉 =
∫ b

a f(x)g(x) dx. (The inner product on L2(R) is

〈f, g〉 =
∫ ∞
−∞ f(x)g(x) dx.)

Having any kind of inner product gives a Hilbert space quite a few interesting properties:

Properties of the Inner Product on any (real) Hilbert Space

For vectors f, g, h ∈ H and real constants a and b:

1. 〈f, f〉 = ‖f‖2

2. 〈f, f〉 ≥ 0 and equals 0 only when f = 0

3. 〈f, g〉 = 〈g, f〉

4. 〈af + bg, h〉 = a〈f, h〉 + b〈g, h〉

5. (Schwarz Inequality) |〈f, g〉| ≤ ‖f‖ · ‖g‖

6. (Angle between vectors) cos θ =
〈f, g〉
‖f‖‖g‖

7. (The Pythagorean Theorem) If two L2 functions f and g are at right

angles, then ‖f‖2 + ‖g‖2 = ‖f + g‖2

8. (Parallelogram Law) ‖f + g‖2 + ‖f − g‖2 = 2‖f‖2 + 2‖g‖2
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Exercises

1. Find the inner product of f(x) = 3x2 + 1 and g(x) = 2x on L2(1, 3). Also find the angle between the vectors. What linear

function in L2(1, 3) is perpendicular to f?

2. Prove the Schwarz inequality for an arbitrary L2 space.

3. Use inner product properties 1-4 to prove the Pythagorean Theorem and the Parallelogram Law.

4. The Hilbert space `2 is the collection of infinite sequences (vectors) v = (a0, a1, a2, ...) such that ‖~v‖2 =
∑∞

j=0 |aj|2 <∞. `2 is

a complex Hilbert space, meaning that vector entries can be complex numbers. The inner product is then conjugate-linear in the

second coordinate: if v = (a0, a1, a2, ...) and w = (b0, b1, b2, ...), then 〈v, w〉 =
∑∞

j=0 ajbj .

Prove that for complex α with |α| < 1, that ~Kα = (1, α, α2, α3, ...) belongs to `2 and compute its norm.
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3.3 Orthonormal Basis for Hilbert Space

Key Concepts

1. A orthonormal basis for a Hilbert space

2. The Gram-Schmidt process for generating an orthonormal basis

3. The Laguerre polynomials that give an orthonormal basis for L2

4. The Projection Theorem that allows a Hilbert space to be decomposed into subspaces

5. An isometric isomorphism between Hilbert spaces to show they are equivalent

6. Parseval’s identity established by the isometric isomorphism between L2 and `2

3.3.1 A Vector Space Basis

Inquiry. How do you break a vector in R3 into “pieces”? How could I do the same with a vector in `2?

Definition. A set of elements {bn} in a vector space equipped with an inner product is orthogonal when 〈bm, bn〉 = 0 for two

distinct elements bm and bn. An orthogonal basis for a Hilbert space H is a set of orthogonal elements {bn}, where each bn ∈ H has the

property

For f ∈ H, if 〈f, bn〉 = 0 for every vector bn in the set, then f = 0.

The basis is orthonormal if, in addition, each basis element has 〈bn, bn〉 = 1. The (well-defined) dimension of the Hilbert space is

the cardinality of any of its orthogonal basis sets.

Inquiry. How would you suggest we find an orthonormal basis for L2?
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3.3.2 The Gram-Schmidt Process

Gram-Schmidt Process. The Gram-Schmidt process consists of the following algorithm performed on a given finite set of vectors

{g0, . . . gn} :

Start by letting f0 = g0.

Then set f1 = g1 − 〈g1,f0〉
‖f0||2 f0.

Next, f2 = g2 − 〈g2,f1〉
‖f1||2 f1 −

〈g2,f0〉
‖f0‖2 f0.

Continue this process until f0, . . . , fn have been defined (the same number of functions as the number of separate functions g in the

original set). At each step, use the rule

fj = gj − 〈gj ,fj−1〉
‖fj−1||2 fj−1 − 〈gj ,fj−2〉

||fj−2‖2 fj−2 − . . .− 〈gj ,f0〉
‖f0‖2 f0.

Exercise. Prove that the Gram-Schmidt process gives a set of mutually orthogonal vectors.

Exercise. Use the Gram-Schmidt process on the collection of L2(0,∞) functions {g0, g1, g2, g3} where gn(x) = xne−x/2 to

generate a set of orthonormal functions {e0, e1, e2, e3}. These are (weighted) Laguerre polynomials.
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The Gram-Schmidt process can continue indefinitely, but not does not always create a basis when applied to a countably infinite

collection of functions. The Laguerre polynomials do form a basis for L2(0,∞) and can be defined directly as

e−xLn(x) = 1
n!(

d
dx )n(xne−x), n = 0, 1, 2, . . . ,

Exercise. Show that the Laguerre (unweighted) polynomial e1 obtained from the previous exercise matches this definition up to a

scalar constant. In other words, show e1e
x/2 = c1L1(x). Then do the same for e2 and L2(x).

3.3.3 The Projection Theorem

Definition. The linear span of a collection of functions g0, g1, . . . , gn is the subspace of a vector space given by every linear combination

of those elements, i.e.

span{g0, g1, . . . , gn} = {a0g0 + . . .+ angn : a1, . . . , an ∈ R}.

Best Approximation. Given a function f in L2, there exists a best approximation to f that is in the (closed) linear span, M , of a

collection of functions g0, g1, . . . , gn. The best approximation to f by an element g inM is the one that minimizes the value of ‖f −g‖,

and this is given by

g = c0f0 + c1f1 + . . .+ cnfn, where cj =
〈f, fj〉
‖fj‖2

, and where the functions f0, . . . , fn

are produced when the Gram-Schmidt process is applied to {g0, g1, . . . , gn}.

This also means that 〈f − g, h〉 = 0 for every h ∈ M . The set of elements in the vector space that, like f − g, are orthogonal to all

elements of M , are denotedM⊥. The best approximation g is the orthogonal projection of f ontoM .

Exercise. The function f(x) = x2, 0 < x < 1, is in L2(0,∞). Define a subspace

M = {a0g0 + a1g1 + a2g2 : a0, a1, a2 ∈ R} with gn(x) = xne−x/2, n = 0, 1, 2. We determine the best approximation to f(x) in M

and write f = g + h, where g ∈ M and h ∈M⊥.
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The Projection Theorem. If M is a closed linear subspace of L2, then f ∈ L2 can be uniquely expressed as f = g + h, where

g ∈M and h ∈M⊥.

Exercise. Prove the Projection Theorem.

Exercise. In L2(0, 1), defineM = {g(x) = c0 +c1x}, where c0, c1 ∈ R. Use the projection theorem and the Gram-Schmidt process

to describe M⊥.
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3.3.4 Equivalence of Hilbert Spaces

Sometimes, there is a complete identification between two Hilbert Spaces, similar to a group isomorphism or a continuous bijection

between topological spaces.

Definition. A Hilbert space isomorphism is a one-to-one linear map T from one Hilbert space H onto another K that satisfies

‖T (h)‖
K

= ‖h‖
H

. When such an isomorphism T exists, we say H and K are isometrically isomorphic to one another.

Exercise. Prove that a Hilbert space isomorphism T from a Hilbert space H to another K satisfies

〈T (g), T (h)〉
K

= 〈g, h〉
H

, for g, h ∈ H.

Exercise. Use the (weighted) Laguerre polynomials to construct a Hilbert space isomorphism between L2(0,∞) and `2, and prove

that they are isomorphic.
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Sample Test Problems for Chapter 3

1. Find the angle between 1 − x and x2 in L2[0, 1].

2. Prove that the sequence of vectors αn in l2, where αn = (1, α, α2, ..., αn, 0, 0, 0....) for some real α, 0 < α < 1, is Cauchy in l2.

3. Find the L2-norm limit of the sequence fn(x) = 1
2nx+ 1 − 1

2n and prove your answer.

4. Show that if equality is attained in the Cauchy-Schwarz inequality for two vectors f, g, then they are linearly dependent.

5. Use the Gram-Schmidt process to convert the set {1, x, x2} into three mutually orthogonal vectors on L2[0, 1].

6. Prove that if f ∈ L2[0, 1] and g ∈ L3[0, 1], then fg ∈ L6/5[0, 1].

7. Let k ∈ N be fixed and given. Prove the function sequence fn(x) = xk/n, where n = 1, 2, 3, . . ., converges to f(x) = 0 in the

L2(0, 1) norm.

8. Prove the Riesz-Fischer Theorem: If {fn} is a Cauchy sequence of functions in an Lp space with p ≥ 1 (so that, given ε > 0,

there exists N so that ‖fn − fm‖p < ε whenever m, n ≥ N ), then fn converges to a function f ∈ Lp in the Lp-norm limit.

In your proof, feel free to use Lemma 3.1.2: Let fk ∈ Lp for k = 1, 2, 3, . . . . If
∑‖fk‖ converges as a real-valued series, then

∑

fk converges to a function g in Lp. Moreover,
∑

fk(x) converges to g(x) pointwise for almost all x.

9. Prove the Pythagorean theorem holds in L2(0, 1) for the functions f(x) = x2 and g(x) = 3x2− 9/5. Exhibit the values for ‖f‖2,

‖g‖2, and ‖f + g‖2.

10. For f(x) = 1 and g(x) =
√
x− 1, find the values of the inner product 〈f, g〉 and the norms ‖f‖ and ‖g‖ in L2(1, 5). Then

determine an approximate radian measurement for the angle between f and g, as the functions are thought of as elements of

L2(1, 5).
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11. a. Show, for complex z with |z| < 1, the vector ~kz =

2

6

6

6

6

4

1
z

z2

z3
.
.
.

3

7

7

7

7

5

is an element of `2. b. Did you love Taylor series from Calculus 2?

(Answer yes or no, and give a simple reason why.) Then suppose ~f =

2

6

6

4

a0
a1
a2

.

.

.

3

7

7

5

∈ `2. Find an infinite series representation for its `2

inner product with ~kz=

2

6

6

6

6

4

1
z

z2

z3
.
.
.

3

7

7

7

7

5

, where z ∈ R has |z| < 1.

12. a. Give simple reasons why:

i. The function sequence fn(x) = X[0,n](x)e
x, where n = 1, 2, 3, . . ., converges pointwise at every x ∈ [0,∞) to f(x) = ex .

ii. Each element of that function sequence is in L1(0,∞).

iii. The function sequence does not converge to f(x) in the L1(0,∞) norm.

b. From this example, what can you conclude about pointwise convergence and strong convergence?

13. (Take-Home problem?) Find a sequence of functions that converges pointwise ∀x ∈ [0, 1] but does not converge in L2[0, 1]-norm.
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Chapter 4

Measure Theory

4.1 Lebesgue Measure

Key Concepts

1. Definition of Lebesgue measurable set

2. Properties of Lebesgue measure

3. Other definitions of measure

4. Other examples of measure

Definition. A set S in R is Lebesgue measurable when its characteristic function XS is a measurable function. In this case, we

define the Lebesgue measure of S, denoted m(S), as

m(S) =
∫

XS

whenever XS ∈ L1. If XS is not Lebesgue integrable, then we define m(S) = ∞.

Examples. Let ∅ be the empty set, C be the Cantor set and V the Vitali set.

1. m([a, b]) = b− a

2. m(∅) = 0

3. m(C) = 0

4. m(V ) = ∞

4.1.1 Properties of Lebesgue measure

Although not every set is measurable, the following theorems show that measurable sets can be combined through union and intersection.

Theorem. If S and T are Lebesgue measurable sets in R, then so are S ∪ T and S ∩ T , and

m(S ∪ T ) = m(S) +m(T ) −m(S ∩ T ).

Theorem. Suppose S =
∞∪

n=1
Sn, where Sn is a measurable set. Then S is measurable with

m(S) ≤
∞
∑

n=1
m(Sn).

If in addition the sets Sn are disjoint, so Sj ∩ Sk = ∅ when j 6= k, then

m(S) =
∞
∑

n=1
m(Sn).

Inquiry. In Section 1.2, we said that m(S) = 0 when S can be covered with a sequence of open intervals I1, I2, I3, . . . whose

bounded total measure
∞
∑

n=1
m(In) is arbitrarily small. Are these definitions equivalent? Can you prove it?
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4.1.2 Other Ways to Define Measure

The Lebesgue measure is not the only possible measure on sets. Here are listed of desired properties for a measure.

1. Universality: the measure of any real set to be properly defined.

2. Countable Additivity: the measure of the union of a countable number of disjoint sets to equal the summation of the measure of

each.

3. Length Agreement: for any interval I, the measure of I to equal its length.

4. Translation Invariance: the measure of any set E to equal, for any given real c, the measure of the translated set E + c = {x+ c :

x ∈ E}.

Lebesgue measure accomplishes 2, 3, 4, but not 1 (the Vitali set is not measurable).

Example A unit point mass measure mp is defined for a real number (the “point”) p. For a set S, if p ∈ S, then mp(S) = 1, and if

p /∈ S, then mp(S) = 0. The measure of every set S is defined, and so mp satisfies the property of universality.

For example, let p = 1/2. Depending upon whether or not 1/2 is in the set, its point mass measure at 1/2 is either 0 or 1. So

m1/2(R) = 1, m1/2([0, 1]) = 1, m1/2([−10, 10]) = 1, m1/2([3, 4]) = 0, and m1/2(C) = 0 for the Cantor set C because 1/2 /∈ C . You

can see m1/2 does not satisfy the property of length agreement.

Question. Is an arbitrary point mass measure mp countably additive? Is it translation invariant?

Remark. No measure can satisfy all four properties! Proof as follows:

1. Assume all four properties apply to an arbitrary measure m.

2. Define a relation on [0, 1): a and b in [0, 1) are related if a−b is a rational number. (E.g., all rational numbers in [0, 1) are related.)

3. Choose one number from each equivalence class and put them together into a set S.

4. Enumerate the rationals in [0, 1): {0, r1, r2, r3, . . .}.

5. Consider the sets Sn = {s+ rn : s ∈ S}, n = 0, 1, 2, . . . .

(Notice S = S0, and the Sn are mutually disjoint.)

6. Note [0, 1) =
∞∪

n=0
Sn. So m([0, 1)) =

∞
∑

n=0
m(Sn).

7. Note m(Sn) = m(S) for each of the sets Sn, by translation invariance.

8. What’s the problem?

Inquiry. Get in three groups and invent your own measures! One group should find a measure that satisfies principles 1, 3, 4, and

not 2. The next group, find a measure that satisfies 1, 2, 4, and not 3. The last group, find a measure that satisfies 1, 2, 3 and not 4.
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4.2 Integrals with Respect to Other Borel Measures.

Key Concepts

1. A σ-algebra of Borel sets

2. A Borel measure on a σ-algebra of Borel sets

3. More examples of Borel measures

4. The Lebesgue integral with respect to a Borel measure

Definitions.

1. First, form a “σ-algebra of Borel sets B”:

• Start by putting all the intervals of R (including R, single-point intervals of the form {x}, other infinite intervals, and the

empty set) into B.

• Then add into B all of the sets formed as countable unions, or countable intersections, or complements of these intervals.

• Then add in all of the sets that are countable unions, intersections, or complements of anything already in B.

• Continue, forming B as closed with respect to countable unions, countable intersections, and complements.

In this way, a σ-algebra is a collection of sets B where every union or intersection of a countable collection of sets in B, along

with any complement, is again in B.

2. Now you can define a general (not just Lebesgue) measure µ on each set in the σ-algebra B. We call such measures a Borel

measure. A measure is technically a function µ : B → [0,∞], defined on all of B, with three main properties.

(a) It is defined for each interval of R, with the measure of the empty set µ(∅) being zero and (so the measure is not trivial or

always infinite) at least one interval having finite nonzero measure.

(b) It is countably additive, so µ(∪Bn) =
∑

µ(Bn) for a countable number of disjoint sets Bn. (The fact that we are working

inside a σ-algebra assures us—whenever each Bn is a member of B—that ∪Bn is also a member of B.)

(c) We insist µ is defined so it is finite on any closed and bounded set, which means µ is defined so it is finite on every closed

and bounded interval.

3. The Lebesgue Integral with Respect to a Borel Measure µ: Take a Borel measure µ, which has a measure µ(I) for any interval

I. Then:

(i) The integral with respect to µ of the step function φ(x) =
n
∑

j=1

cj · XIj
(x) is

∞
∫

−∞
φ(x) dµ(x) =

n
∑

j=1
cj · µ(Ij).

This integral is also denoted
∫

φ dµ.

(ii) If a nondecreasing sequence of step functions {φn} converges µ-almost everywhere (except possibly on a set S with µ(S) =

0) to a function f , then the integral of f with respect to µ is

∫

f dµ = lim
n→∞

∫

φn(x) dµ(x).

If the integral is finite, then f is said to be in the collection of functions L0(µ).

(iii) Whenever a function f can be written as f = g − h, where g, h ∈ L0(µ), then

∫

f dµ =
∫

g dµ−
∫

h dµ.

Such functions f are said to be in the function space L1(µ).
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Example. Point Mass Measure: First define µ on an interval like this:

Pick a real number k as a “weight.” Then µp(I) = k for any interval I that contains a given point p, and µp(I) = 0 for an interval I

not containing p. This measure turns out to produce µp(S) = 0 precisely when S does not contain p. The measure generates an integral

of a function f with respect to µp that, essentially, evaluates f at p and then multiplies by k. For if φ =
n
∑

j=1

cj · XIj
(x) is a step function

(without loss of generality, we may assume the intervals Ij are disjoint), then
∫ ∞
−∞ φ(x) dµ(x) =

n
∑

j=1
cj · µp(Ij) =

∑

{j:p∈Ij}
cj · k =

n
∑

j=1

cj · k · XIj
(p) = k · φ(p). Working through the rest of the three-step process, we get

∫ ∞
−∞ f(x) dµp(x) = k · f(p) for f ∈ L1(µp).

Problems.

1. For an interval I, calculate
∫

XI dµ, where µ is the point mass µ = 3µ1/2. Hence, for an interval I, µ(I) = 3µ1/2(I) = 3 if

1/2 ∈ I, and µ(I) = 0 if 1/2 /∈ I.

2. What is
∫

X[0,2)∪(5,12) dµ?

3. What is
∫

XC dµ, where C is the Cantor set?

4. For a real-valued function f whose domain includes x = 1/2, calculate
∫

fdµ.
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Example. Absolutely Continuous Measure. An absolutely continuous measure (with respect to Lebesgue measure), which we

call ν , produces an integral of the form
∫

g dν =
∫

g(x) · w(x) dx, where the function w is measurable and takes on only nonnegative

values, and dx refers to Lebesgue measure. The function w is sometimes called a weight function or a density function. It turns out

ν(S) = 0 exactly when S has Lebesgue measure zero. Here’s an example, where we use the three-step process to construct the integral

with respect to a measure ν .

We choose w(x) = e−x2

/
√
π, and develop the corresponding integral. Before proceeding, we verify w is in L2(R) (w is measurable

because it is continuous). The square of the L2 norm is

‖w‖2
2 =

∞
∫

−∞
e−2x2

/π dx =
∞
∫

−∞
e−u2

/(
√

2π) du = 1/
√

2π.

Use w to define the measure of an interval I = (a, b), where a and b can be allowed to equal ∞ or −∞:

ν(I) ≡
∞
∫

−∞
XI(x) · e−x2

/
√
π dx.

Any absolutely continuous measure having a given weight function w works this way. I

First, for a step function φ(x) =
n
∑

j=1

cj · XIj
(x), we have

∫

φ dν =
n
∑

j=1

cj · ν(Ij).

Applying the formula for ν(I),
∫

φ dν =
n
∑

j=1
cj · [

∫ ∞
−∞ XIj

(x) · e−x2

/
√
π dx].

Interchanging the finite sum and the integral sign,
∫

φ dν =
∫ ∞
−∞(

n
∑

j=1

cj · XIj
(x)) · e−x2

/
√
π dx =

∫ ∞
−∞ φ(x) · e−x2

/
√
π dx.

The main point is that the integral of the step function with respect to ν turns out to be the Lebesgue integral of the step function mul-

tiplied against the weight functionw. This integral exists (so it is well-defined), because
∫ ∞
−∞ φ(x)·e−x2

/
√
π dx ≤

∫ ∞
−∞ φ(x)/

√
π dx <

∞ and the function φ(x) · e−x2

/
√
π is continuous almost everywhere.

Second, given a nondecreasing sequence of step functions φn that converges a.e. (in the sense of ν , which is the same as in the sense

of Lebesgue measure) to a function f , the integral of f is

∫

f dν = lim
n→∞

∫

φn dν.

By the monotone convergence theorem,

∫

f dν = lim
n→∞

∞
∫

−∞
φn(x) · e−x2

/
√
π dx =

∞
∫

−∞
lim

n→∞
φn(x) · e−x2

/
√
π dx =

∫

f(x) · e−x2

/
√
π dx.

In short, the integral is understood as the Lebesgue integral of f multiplied by the weight e−x2

/
√
π. We say such functions f , producing

a finite integral, are in L0(ν).

Third, when f can be written as f = g − h, for g and h in L0(ν), then f ∈ L1(ν) and
∫

f dν =
∫

g dν −
∫

h dν . From the last

paragraph, we see
∫

f dν =
∫

f(x) · e−x2

/
√
π dx for such functions.

Problem. Using the weight function w(x) = e−x2

/
√
π to form the absolutely continuous measure ν so that dν(x) = w(x)dx, find

∫

xX(0,∞)(x) dν(x) and
∫

x2 dν(x).
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Example. Singular Continuous Measure: The integration process also works for singular continuous measures, constructed from

a function F that is singular with respect to Lebesgue measure. That means F ′(x) = 0 a.e. and F is continuous. The associated Borel

measure µF is defined as µF ([a, b]) = F (a) − F (b) on any interval I with endpoints a and b, and the interval can be open or half-open

as well.

An example is the famous Cantor function F , which is constant on the complement of the Cantor set C . The function’s growth is

supported on [0, 1], equals 0 for negative x values, and equals 1 for x > 1. For x ∈ [0, 1], write x in its ternary (base 3) expansion.

For technical reasons that make this definition work, do not use a 1, when possible, in the expansion (for example, when representing

x = 1/3 we choose 0.02222 . . .[3] instead of 0.10000. . . .[3]). Next, replace the first 1 in the expansion with a 2 and everything after it

with 0. Finally, replace any 2 in the resulting expansion with a 1, and interpret the result as a binary number. That number is F (x).

Figure 4.1: The Cantor Function is often fancifully called the Devil’s staircase.

Calculating F . For example, 1/2 = 0.111111 . . . [3] in base 3 (there is no way not to use 1s in the expansion).

We replace the first 1 with a 2 and everything after it with a 0, obtaining 0.2000 . . . .

Now we replace the 2 with a 1, obtaining 0.1000....

Interpreting that expansion in base 2, we get the resulting function value: F (1/2) = 1/2 + 0/22 + 0/23 + · · · = 1/2.

Many values are easy to pick out of the graph visually; e.g., F (1/3) = 1/2, F (1/9) = 1/4, and F (7/9) = 3/4.

The associated measure on intervals follows. For example, µF ([2/9, 1/3)) = F (1/3)−F (2/9) = 1/2−1/4 = 1/4, µF ([1/3, 2/3]) =

1/2− 1/2 = 0, and µF ((2/3, 7/9) = 3/4− 1/2 = 1/4.

Exercise. Find
∫

x dµF (x). (Hint: This shows how singular continuous measures can form challenging problems. See Exercise 4.2.25.)
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4.3 L2(µ)

The Key Concept. A function is µ-measurable when mid{−g, f, g} is in L1(µ) for every nonnegative g ∈ L1(µ). The Hilbert space

L2(µ) is then the collection of µ-measurable functions f with finite L2(µ) norm, which is defined as ‖f‖ =
√

∫

|f |2 dµ.

Exercises.

1. For a function f whose domain includes x = 1/2 and for the point-mass measure µ1/2, define the L2(µ) norm of f to be
( ∫

|f |2 dµ
)1/2

. Calculate the L2(µ) norm of f(x) = x.

2. Describe the collection of functions in L2(µ) when µ is defined as the sum of two unit point mass measures µ = µ1/2 +µ0. Here,

µ1/2 is the unit point mass measure at p = 1/2, so for a real set S, µ1/2(S) = 1 if 1/2 ∈ S and µ1/2(S) = 0 if 1/2 /∈ S. The

point mass µ0 is defined the same way, except the point mass is at p = 0.

(a) What real-valued functions are in L2(µ)? (Hint: such a function must be well-defined at 0.)

(b) Why is the space L2(µ) two-dimensional? (Hint: describe it as the space of linear functions f(x) = c1(1/2− x) + c2x.)

(c) Why do the functions 1 − 2x and 2x form an orthonormal basis for L2(µ)? (Note the normalizations of the elements.)

(d) How can you describe any function f in L2(µ) in a Fourier series expansion of the form f = 〈f(x), 1 − 2x〉 · (1 − 2x) +

〈f(x), 2x〉 · 2x?
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4.4 Probability

Key Concepts

1. An experiment is a general term describing an activity that can result in many different outcomes,

2. A sample space of an experiment is set of all possible outcomes. Many times because of simple probability formulas that are

especially helpful when the sample space is finite, probabilists try to express the sample space as “equiprobable,” where all the

outcomes have an equal probability.

3. An outcome of an experiment is the most fundamental type of result of the experiment. An event is a collection of outcomes—a

subset of the sample space.

4. A random variable assigns a real number to each outcome of an experiment.

5. A probability space (S,F, µ) is a trio that models (describes) probabilistic behavior. Here, S is the sample space and F represents

the set of all subsets of S, where F is required to form a σ-algebra of subsets. µ is a probability distribution—a probability measure.

Definitions. 1. Given an experiment and a sample space S of all possible outcomes, a random variable X assigns a real number x to

each outcome s ∈ S. We sometimes write X(s) = x. A real-valued random variable X with Borel distribution is a random variable

defined on a probability space (S,F, µ), where S ⊆ R is the sample space of values X assigns. F is required to be a collection of sets

containing elements of S (always including the empty set and S itself) and for which any complement of a set in F is again in F and

every countable union of sets in F is again in F. Furthermore, we require µ to be a Borel measure in the sense of Section 4.2, for which

every set in F is µ-measurable and for which
∫

XS dµ = 1.

2. For such a real-valued random X, the probability that X assigns a number in a set A of F is P [X ∈ A] =
∫

XA dµ.

Examples.

1. Suppose X = the roll of a fair die. Then P [X ≤ x] = x/6 for x = 1, 2, 3, 4, 5, 6.

2. Suppose R is the total on a roll of two fair six-sided dice, where . The two outcomes, for example, of rolling a three, which are

“1, 2” and “2 , 1” (both have R = 3) are different. There are 6 · 6 = 36 two-dice rolls. The sample space is S =
{

11, 12, 13, 14, 15, 16
21, 22, 23, 24, 25, 26
31, 32, 33, 34, 35, 36
41, 42, 43, 44, 45, 46
51, 52, 53, 54, 55, 56
61, 62, 63, 64, 65, 66

o

F is the collection of all the 236 subsets of S, and µ satisfies µ({s}) = 1/36 for any s ∈ S, and (for any general A ⊂ F) µ(A) = n/36,

where |A| = n. Therefore, for example, µ({R = 7} = µ({16, 25, 34, 43, 52, 61}) = 6/36 = 1/5.

3. Suppose U is a continuous random variable (one that has an absolutely continuous probability measure) that assigns values x

in the set [0, 1] with equal weight, so the density function is f(u) = X[0,1](u). (U is the uniform random variable on [0, 1].) Then the

sample space is S = [0, 1], F consists of all the Lebesgue measurable subsets of [0, 1], and, forA ⊂ F, µ(A) = m(A).

Exercises.

1. Let Y be the number of heads tossed with three coins. List S, F, and µ. You may wish to note that the sample space has eight elements,

and, for example, the outcome HTH is different from the outcome HHT. Both have Y = 2.

2. Let W be the continuous (exponential) random variable that assigns values x in the set [0,∞) according to the density function e−x .

Find the cumulative probability function P [X ≤ x] for any x ∈ [0,∞).
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Practice Test on Chapter 4

(These are take-home, i.e. tough, problems.)

1. A σ − algebra over a set X is a collection of subsets of X that is closed under countable unions, countable intersections, and

complementation. If we partition [0, 1] into the two disjoint sets S = [0, 1/2) and T = [1/2, 1], how many elements are in the

resulting σ-algebra generated by S and T (by taking every possible countable union, countable intersection, and complement of

those sets and resulting sets)?

2. If we take every singleton set {x} for every x ∈ R, and then take every possible countable union, countable intersection, and

complement of those sets and resulting sets (i.e. the algebra generated by the singleton sets), is this the same algebra as the

σ-algebra generated by every possible interval on R? Why or why not?

3. Define the function ρ : [0, 1] → R+ by ρ(x) = x2. Define the measure of subintervals of [0, 1] by

µρ([a, b]) = ρ(b) − ρ(a) = b2 − a2.

Is the measure µρ universal? Countably additive? Translation invariant? Does it satisfy the property of length agreement?

4. Use the three-step process to find
∫ 1

0 (x+ 1)dµρ.

5. Find the angle between x+ 1 and x2 in L2(µρ), where µρ is defined as in the previous problem.

6. Toss two coins, and then have a machine (which is highly irregular and works unreliably) fill a one-gallon paint can with a volume

x of paint. Suppose any value x between 0 and 1 gallon is the filled amount of paint randomly attained with equal weight. Let X

be (the number of heads tossed + x). Describe the probability space for X and find a formula for the cumulative probability of X.
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Chapter 5

Hilbert Space Operators

5.1 Bounded Linear Operators on L2

Key Concepts

1. A Hilbert space operator is a bounded linear map from one Hilbert space to another.

2. An operator T is linear when, for f, g ∈ H and scalar constants a and b, T (af + bg) = aT (f) + bT (g). It is bounded when there

exists a constant K > 0 such that, for every f in H, ‖T (f)‖
G
≤ K · ‖f‖

H
.

3. A rank-one operator T on L2 has the form T (f)(x) = 〈f, φ〉φ for a given φ ∈ L2.

4. Two operators T : H → H and S : G → G are isometrically isomorphic when there is an isometry U from one of the operator’s

domain Hilbert space onto the other’s that makes the action of the operators equivalent, meaning 〈Tf, g〉H = 〈UTU−1u, v〉G =

〈Su, v〉G for all f, g ∈ H and u, v ∈ G with Uf = u and Ug = v.

Broader Descriptions Operators on a Hilbert space H are objects that map the elements of H to another Hilbert space, say G (where

perhaps H and G are the same space)1 . So if the operator is T , then we describe the map from one space to the other as

T : H → G.

If f is an element in H, then we write T (f) as its image in G. We will often relax the need for parentheses and write Tf for T (f).

We will assume H is separable: it has a countable basis. This section examines the situation where H is an L2(µ) space. Then an

operator on L2(µ) maps the functions in L2(µ) to the objects in another Hilbert space G, where perhaps G = L2(µ). In general, we say

the operator T is linear when, for f, g ∈ H and scalar constants a and b,

T (af + bg) = aT (f) + bT (g).

The operator T is bounded when there exists a constant K > 0 such that, for every f in H,

‖T (f)‖
G
≤ K · ‖f‖

H
.

The smallest such K, described in terms of the infimum over all such constants, is the norm of the operator, or the operator norm, and

so a bounded operator is one with finite operator norm. The value of the norm for a given operator T is written ‖T‖, and it is calculated

as

‖T‖ = sup{‖Tf‖
G
},

1In the 1960s, Louis de Branges and James Rovnyak examined a certain type of functional Hilbert space, which they described as “square-summable.” Their space of

square-summable power series is a vector space over the complex numbers that admits an inner product. It is naturally seen to be equivalent to `2 . Studying operators on

square-summable power series continues to form a productive area of investigative research.
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where the supremum of the G-norm values is taken over all elements f in H with ‖f‖
H
≤ 1.

Example: Choose a function r(x) in an L2 space. Then, for f in it, define the operator Tr : L2 → L2 by

Tr(f) = 〈f, r〉 · r(x).

You can see that every function in L2 is mapped to a constant multiple of r(x). Hence (considering L2 as a vector space of functions),

the range of Tr (the set of output values) consists of the one-dimensional span of the function r. (The one-dimensional span of r is as

defined in any linear algebra course as the set of functions g of the form g(x) = c · r(x) for a constant c. In this case, the output values

of Tr are exactly that type, with c = 〈f, r〉.) Because its range is one-dimensional, the operator Tr is a rank-one operator. It turns out

Tr is a bounded linear operator, and we can show why each of the two properties hold.

Linearity: Tr is linear because, for L2 functions f and g and constants a and b,

Tr(af + bg) = 〈af + bg, r〉 · r(x) = a〈f, r〉 · r(x) + b〈g, r〉 · r(x) = aTr(f) + bTr(g).

Boundedness: We can see Tr is bounded by examining the L2-norm of any f ∈ L2:

‖Tr(f)‖ = ‖〈f, r〉 · r(x)‖ = |〈f, r〉| · ‖r(x)‖.

By Schwarz’s inequality (see p. 140), |〈f, r〉| ≤ ‖f‖ · ‖r‖, and so

‖Tr(f)‖ ≤ (‖f‖ · ‖r‖) · ‖r‖ = ‖r‖2 · ‖f‖.

Boundedness is therefore satisfied by settingK = ‖r‖2. This value is the operator norm ‖Tr‖, since sup{‖Tr(f)‖} = ‖r‖2 is attained

when ‖f‖ = 1.

Problems. 1. For the function space L2(−π, π), define Tcosx(f) = 〈f, cosx〉 · cosx. What is Tcos x(f) when f(x) = x2? Determine

the operator norm ‖Tcosx‖ and show ‖Tcosx(x2)‖ ≤ ‖Tcosx‖ · ‖x2‖.

2. The shift operator S on `2 is defined for a vector ~v ∈ `2 by S(~v) = S(

[

v1
v2
v3

.

.

.

]

) =

[

0
v1
v2

.

.

.

]

. That is, it shifts each component of the

vector down one spot and places a 0 in the first component. We take up the shift operator for an arbitrary Hilbert space in Section 5.3.

Determine S(~v), where ~v =

[ 1
0
0
.
.
.

]

.

3. Determine S(~v), where ~v =







0
.
.
.

0
1
0
.
.
.






, where the 1 appears in the nth coordinate spot.

45



5.2 Bounded Hilbert Space Operators

Key Concepts

1. The form of a linear operator on a finite-dimensional Hilbert space can always be described as matrix multiplication.

2. A rank-one operator T on a given Hilbert space H maps a general element u ∈ H to Tu = 〈u, v〉v, where v is a chosen element

of H.

3. An operator T : H → G is compact when it can be written as T (f) =
∞
∑

n=0

λn〈gn, f〉φn for f ∈ H, where the vectors g0, g1, g2, . . .

and φ0, φ1, φ2, . . . are (not necessarily complete) orthonormal sets. Here λ0, λ1, λ2, . . . forms a sequence of nonnegative values—

the eigenvalues of T . An excellent example is T (f)(x) =
∫ π

0
sin(x+ y)f(y) dy on L2(0, π).

Four important examples of infinite-dimensional Hilbert spaces

1. For real-valued elements u, v ∈ L2(R), 〈u, v〉 =
∫

R
uv.

2. For `2, 〈~u,~v〉 =
∞
∑

j=0

ujvj , where uj and vj are the jth (real-valued) entries in the corresponding vector.

3. For complex-valued analytic functions f, g ∈ H2(D) that have unit circle boundary functions f(eit) and g(eit), respectively,

〈f, g〉
H2(D)

= 1
2π

2π
∫

0

f(eit)g(eit) dt =
∞
∑

n=0
anbn, where f(eit) =

∞
∑

n=0
aneint and g(eit) =

∞
∑

n=0
bneint.

4. For real-valued elements u, v in the Sobolev space W 1,2, 〈u, v〉
W1,2 =

b
∫

a

u(x) · v(x) dx+
b
∫

a

Du(x) ·Dv(x) dx.

The Jordan Form Theorem If an n× n matrix T has m linearly independent eigenvectors, then there exists an n× n invertible matrix

P such that PJP−1 = T , where J is a block diagonal matrix of the form J =

»

J1 . . .
Jm

–

. (Any blank part of the matrix is assumed

to be filled with entries that are all zero.) Ji corresponds to the ith linearly independent eigenvector and is a block matrix of the form

Ji =

»

λi 1
· ·

· 1
λi

–

, where λi is the ith eigenvalue (and the blank components are assumed to be filled with zeros).

Examples. 1. Suppose T =
h

4 0 0
1 4 0
5 −3 1

i

. It has two eigenvalues λ = 4 (which has multiplicity two—in this case, it appears twice on the

diagonal and T is lower-triangular) and λ = 1. Find two eigenvectors for T , one for each eigenvalue.

Solution: Set T
h

x
y
z

i

= 4
h

x
y
z

i

and equate coefficients to solve for x, y and z, using an arbitrary value, say 1 or −1, for any free variable.

Repeat with λ = 1. For example,
[

0
1
−1

]

and
[

0
0
1

]

are two solutions.

2. What is the Jordan form matrix J?

Solution: Because these are the eigenvectors in the last problem are the only two up to arbitrary constant multiples, the other column of

P must be a generalized eigenvector as described in the footnote on p. 228. The next exercise shows it is a generalized eigenvector that

goes with λ = 4. Then the Jordan block for λ = 4 is 2 × 2, and J =
[

4 1 0
0 4 0
0 0 1

]

Exercise Suppose T =
h

4 −1 0
.4 3.4 .2
.2 −5.8 1.6

i

. It has only one eigenvalue λ = 3 (which has multiplicity three as a zero of the characteristic

polynomial p(x) = −(x− 3)3).

1. Show ~v =
h

1
1

−4

i

is an eigenvector for T , in that it solves the eigenvector equation T~v = λ~v.

2. Given ~v is the only eigenvector for T , what is the Jordan form matrix J?

3. Using P =
h

1 2 2
1 1 0

−4 −1 1

i

, which has inverse P−1 = 1
5

h

1 −4 −2
−1 9 2

3 −7 −1

i

, prove T satisfies T = PJP−1 for the matrix J you constructed in

part 2.
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5.3 The Unilateral Shift Operator

Key Concepts

1. The shift operator Mz onH2(D) acts according toMz(f)(z) = z ·f(z). The boundary function forMz(f)(z) is eitf(eit). Hence

Mz induces a shift operator S on H2(T) defined as S(f)(eit) = eitf(eit).

2. A bounded linear operator S on a Hilbert space H is a unilateral shift operator if S is an isometry and lim
n→∞

‖(S∗)nf‖
H

= 0 for

all f ∈ H.

3. An outer function on H2(D) is of the form g(z) = c e

1
2π

2π
R

0

eit+z

eit
−z

log |g(eit)| dt

4. An inner function on H2(D) is either (a) a so-called Blaschke function, such as B(z) =
∏

n

an−z
1−anz , where an = 1 − 2−n (and a

second, simple example is B(z) = z), or (b) a so-called singular inner function, such as s(z) = e
z+1
z−1 . These functions have norm

one on the boundary of the disk.

5. An invariant subspace M is invariant for a given operator A for a given operatorA when Zx ∈ M for any x ∈ M.

Inquiry. For a given operatorA on a Hilbert space H, what are the invariant subspaces for A?2

A partial answer comes from Buerling’s Theorem.

Beurling’s Theorem: The (nontrivial) invariant subspaces of Mz (the operator multiplication by z) on H2(D) are characterized as

bH2 = {b(z) · f(z) : f ∈ H2(D)}, where b is an inner function inH2(D).

Inquiry. Does every (bounded linear) operator A on a Hilbert space H have a nontrivial invariant subspace?

Answer: No one knows. This is the most famous open problem in function theory. Though it has been worked on by mathematicians in

earnest for well more than 75 years, no one has been able to figure it out.

Example Let b be an inner function on H2(D). M = b(z)H2(D) for S = Mz2 on H2(D), defined by S(f)(z) = z2 · f(z). Then M is

invariant for S because, for any x ∈M , x = b(z) · f(z) for some f ∈ H2(D). Then Sx = z2b(z) · f(z) = b(z) · z2f(z). But z2f(z) is

also in H2(D) (in fact, ‖z2f(z)‖H2(D) = ‖f(z)‖H2(D)), and so Sx ∈ b(z)H2(D) = M .

Exercises. Say why the subspace M is invariant for the indicated shift operator S.

1. M = eitH2(T) for the shift operator S(f)(eit) = eitf(eit), where f ∈ H2(T).

2. M =
˘ˆ

b(z)g
0

˜

: g ∈ H2(D)
¯

, where b is an inner function inH2(D), for the shift operator S defined in Exercise 8.

2The nontrivial ones, of course – ∅ and H are always invariant
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5.4 The Spectral Theorem

Key Concepts

1. A self-adjoint operator T (on a Hilbert space H) – an important class of operators with many special properties

2. A multiplicity one operator

3. A Hilbert space isometry that gives an equivalence between H and L2(µ) for some Borel measure µ, where the action of T is as

simple as possible

4. The Spectral Theorem that describes the interaction between these objects

Inquiry. Can we “diagonalize” a self-adjoint operator, even one that acts on an infinite-dimensional Hilbert space? What would such a

diagonalization look like?

The Spectral Theorem: If T is a self-adjoint bounded linear operator on a Hilbert space H with multiplicity one, then there exists a

Borel measure µ on R and a Hilbert space isometry U : H → L2(µ) such that UTU−1f(x) = xf(x) for f ∈ L2(µ).

Examples: 1. Suppose T acts as self-adjoint (it is its own conjugate-transpose) matrix mulitiplication acting on the finite-dimensional

vector space (say, Rn). If, for example, the matrix has n distinct eigenvalues λk with corresponding eigenvectors ~ek , then we can con-

struct µ as the sum of n point masses at the λk’s. The isometry U is constructed from the eigenvectors, and the Spectral Theorem is a

special case of the Jordan Form Theorem in Section 5.2.

2. Suppose T is a multiplicity one Toeplitz operator acting on `2 that is self-adjoint (again, it is its own conjugate-transpose). (Equiv-

alently, T = Tw is multiplication by the real-valued function w on H2(D) followed by projection onto H2(D).) Can we know what

the Spectral Theorem’s constructions are? The answer was impressively described in the 1960s by American mathematician Marvin

Rosenblum. Here is his result:

1. The spectral measure µ is absolutely continuous, so µ(x) = m(x) dx for some (almost everywhere) continuous functionm(x) on

R. Hence, a description of the spectral measure µ is determined from a description of its weight functionm(x).

2. The support of the spectral measure µ (the portion of the real line where m(t) 6= 0) is the spectrum of T and is denoted sp(T ). It

is equal to the interval [c, d], where c = minw(eit) and d = maxw(eit).

3. Write the set Ex = {eit : w(eit) ≥ x} = {eit : a(x) ≤ t ≤ b(x)} for some real functions a(x) and b(x). Then

m(x) = π−1 sin
(b(x) − a(x)

2

)

on [c, d].

4. The isometry U , defined on kernels ~kz ∈ `2 and for almost all real x according to

U( ~kz)(x) = [g(z, x)
√

1 − zeia(x)
√

1 − zeib(x)]−1,

sets up Tw as unitarily equivalent (via the Hilbert space isomorphismU ) to multiplication by x on L2(µ). That is, UTU−1f(x) =

xf(x) for f ∈ L2(µ). Here, |w(eit) − x| = |g(eit, x)|2, where g is outer and x ∈ R satisfies 1
2π

∫ 2π

0
| log |w(eit) − x‖ dt < ∞.

Furthermore, U−1(f)(z) is the vector in `2 formed from the Taylor series coefficients of h(z) =
∫ d

c
f(x)U( ~kz)(x) dµ(x).
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Sample Test Problems for Chapter 5

1. Define the operator Sf =
h

z2f1(z)
zf2(z)

i

on H, where f(z) =
h

f1(z)
f2(z)

i

∈ H = H2(D) ×H2(D). Show S is a unilateral shift operator.

2. Let T be the so-called “Volterra operator” on L2(0, 1) defined as T (f)(x) =
x
∫

0

f(y) dy.

(a) Prove T is linear and bounded.

(b) What is T (x2)? T (cos x)?

3. Show, if c ∈ (0, 1), the subspace A = {f : f(x) = 0 for almost all x ∈ (0, c)} is invariant for the Volterra operator defined in the

last exercise.

4. The multiplication operator T on L2(0, 1) is T (f) = r(x) · f(x) for a given r ∈ L2(0, 1).

(a) Prove T is linear.

(b) Suppose r(x) is continuous on the interval [0, 1], so it attains its maximum. Define M so |r(x)| ≤ M for x ∈ [0, 1]. Prove

‖T (f)‖L2(0,1) ≤M · ‖f‖L2(0,1).

(c) Now additionally assume M = |r(x0)| for some x0 ∈ [0, 1]. Define a sequence of functions gn(x) =
√

n/2, if x ∈
[x0 − 1/n, x0 + 1/n] (and 0 otherwise), n = 1, 2, 3, . . . . Find the L2(0, 1)-norm of gn.

(d) Find an expression (in terms of the integral) for ‖T (gn)‖L2(0,1), where gn is as defined in part (c).

(e) Use the fact that, for f continuous at x0, (n/2)
∫ x0+1/n

x0−1/n
f(t) dt → f(x0) to evaluate your expression in part (d) to find

lim
n→∞

‖T (gn)‖L2(0,1) .

(f) Use your results of parts (b) and (e) to show ‖T‖ = max{|r(x)| : 0 ≤ x ≤ 1}.

5. Give any example of a compact bounded linear operator on the Hardy space H2(D). Make sure you say why the operator is

compact, and prove your operator is linear and bounded.
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Sample Test Problems for Final Exam

1. Use the standard construction to find
∫ 1

−2 x
2 dx.

2. Use the Riemann-Lebesgue theorem to determine if the following Riemann integral exists.

R-
∫ 1

0
f(x) dx, where f(x) =

{

1 if x is in the Cantor set C

0 otherwise

Say why or why not, including identification of the function’s points of discontinuity. Also, if it exists, find its value.

3. Find each integral
∫

f by applying either the Monotone Convergence Theorem or the Lebesgue Dominated Convergence Theorem.

As you use either theorem for each integral, make sure you explicitly state why each of the theorem’s assumptions holds.

a)
∫ 1

0
1√
x
dx

b)
∫ ∞
0
xe−x2

dx

4. Use the Monotone Convergence Theorem to prove the following:

For f ∈ L1 with f ≥ 0, if
∫

f = 0, then f = 0 almost everywhere.

5. A. Each of the following functions are measurable. Find their Lp-norms in the given function space.

i f(x) = cosx in L1(−π, π)

ii m(x) = 1/x4, x ≥ 1 in L2(R)

B. Find the L2-distance between s(x) = 2
√
x and t(x) = 1 + x2 in L2(0, 1).

6. Let X, a random variables with Borel distribution, be the number of Aces dealt in a well-shuffled two-card deal. Using combina-

toric formulas, it turns out there are 1326 hands. The probability of dealing two Aces is 1/221, one Ace is 32/221, and no Aces is

188/221.

50



7. a Describe (don’t give a complete list) the elements of the sample space S, and explicitly write out one of them as a representative

example.

b Identify (don’t give a complete list) the elements of the σ-algebra of subsets F, and explicitly write out three of them as a

representative example.

c Describe in detail the probability measure µ.

d For your measure µ in Part (c), determine
∫

x2 dµ.

8. Let k(x, y) be real-valued and continuous for x and y in (0, 1), so
∫ 1

0

∫ 1

0
|k(x, y)|2 dx dy = M < ∞ for some constant M . For

f ∈ L2(0, 1) define the operator T by

T (f)(x) =
1
∫

0

k(x, y) · f(y) dy.

a Show T is linear.

b Use the Schwarz inequality (|〈f, g〉| ≤ ‖f‖ · ‖g‖) to prove T is bounded.

c When k(x, y) = xy and f(x) = x2, evaluate T (f)(x). In other words, find T (x2).

9. Prove the Riesz-Fischer Theorem: If {fn} is a Cauchy sequence of functions in an Lp space with p ≥ 1 (so that, given ε > 0,

there exists N so that ‖fn − fm‖p < ε whenever m, n ≥ N ), then fn converges to a function f ∈ Lp in the Lp-norm limit.

In your proof, feel free to use Lemma 3.1.2: Let fk ∈ Lp for k = 1, 2, 3, . . . . If
∑‖fk‖ converges as a real-valued series, then

∑

fk converges to a function g in Lp. Moreover,
∑

fk(x) converges to g(x) pointwise for almost all x.

51



Chapter 6

A Few Ideas for Research Projects

A student who has finished a course on the Lebesgue integral may naturally be interested in pursuing an undergraduate collaborative

research project. The possibilities are endless, but here are just a few ideas that follow immediately from concepts presented in such a

course. Many are not developed in a specific manner, but they are offered with a simple hope that they might be helpful, and that they

might encourage an increase in the number of such undergraduate investigations.

1. A student can look at standard operators, such as a composition operator, on various Hilbert spaces. A wonderful undergraduat

project would be to study operators on L2(µ) where µ is a point mass measure, with either a countable number of point masses

(fairly difficult in many cases) or a finite number (which could generate some interesting results. These projects would especially

builds off of material presented in Section 4.2 of this Resource Guide.

2. A student could nicely determine orthogonal basis structures for various L2(µ) spaces. Section 3.3 and 3.4 look at such bases

for Lebesgue measure, specifically for L2(R) and L2(0, 1). Those could serve as models for students to explore other L2 spaces,

including spaces where the measure is not absolutely continuous.

3. A student could get curious about various probability spaces that would correspond to real-life scenarios. Many random variables

are still not understood well mathematically. In 2015-16, Bill Johnston mentored Alex Olivero at Butler University on a project

that looked at issues connected with the average payoff random variable on repeated plays of the St. Petersburg Paradox. Alex

presented an award-winning poster at the JMM on his work.

4. Hilbert spaces of course include finite-dimensional ones, and so the topic of operators on Hilbert spaces include matrix multiplica-

tion operators on finite-dimensions. The material in Chapter 5 launches investigations on this material. Many projects are possible

for interesting undergraduate investigations. For example, and in brief:

(a) What is the Jordan form of various categories of matrices?

(b) What properties are involved for matrices that are isometries or partial isometries?

(c) What are the invariant subspaces for interesting examples of matrix multiplication?

5. Operators on infinite dimensional Hilbert spaces are challenging, but questions can be tractable. A student might study a restricted

category of operators, such as a restricted category of compact operators, and see what generalizations can be made about them.
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Complicated operators can be made simpler by projecting them down onto finite-dimensional subspaces of the Hilbert space, and

then linear algebraic techniques can be applied.

6. Describing relationships between Hilbert spaces can be interesting for students. Of course, finite-dimensional Hilbert spaces are

isomorphic to each other when their dimensions are equal. But finding a formula for the Hilbert space isomorphism that takes

one onto the other, and the inverse isomorphism, can be a great investigation for students when the vectors in the spaces are quite

different objects such as column vectors and functions.

7. Structures of singular continuous measures and associated spaces are incredibly active areas of research. (For example, see [2].)

A student could formulate a singular continuous measure µ of her/his own that is different from the Cantor set, and then ask

questions about it, such as its value for
∫

x dµ.

8. Nonmeasurable sets can be an area of interest. Their constructions can be varied. A student may wish to construct an example

different from the Vitali set of a nonmeasurable set.

9. The Cantor set is clearly only one example of a measure zero set of uncountable cardinality. Relationships between set cardinality

and measure zero (either for Lebesgue measure or some other Borel measure) could provide fruitful investigations. For starters, a

student might wish to construct a number of measure zero uncountable real-valued sets, thinking about algorithmic constructions

that might provide assistance with these constructions. Then their non-Lebesgue measure could be found, using other Borel mea-

sures µ.

10. There can be new formulas or insights in working with kernel functions on various Hilbert spaces. Almost any undergraduate pro-

fessor has in the past assumed topics such as de Branges-Rovnyak spaces are far out of reach of undergraduate students, and in fact

these types of topics may be new to almost any undergraduate faculty mentor. But they are very accessible for a student who has

worked through introductory material on operators, and they should be accessible to both mentor and student for some interesting

work. Indeed, de Branges-Rovnyak spaces form a topic that is really hot right now – many items in operator theory and func-

tion theory seem to be explained well by them. An excellent survey, which an undergraduate student can now understand, is at [1].

11. Here’s a space to fill in your own interests and ideas for student collaborative research work:

53



54



Bibliography
[1] Ball, JosephA. and Bolotnikov, Vladimir , de Branges-Rovnyak spaces: basics and theory, arxiv preprint available at http://arxiv.org/abs/1405.2980,

(July 14, 2016).

[2] Herr, John E. and Weber, Eric S., Fourier Series for Singular Measures, arxiv preprint available at https://scirate.com/arxiv/1503.04856, (July 14,

2016).

[3] Johnston, William, The Lebesgue Integral for Undergraduates, MAA Textbooks, Washington, D.C., 2016. ISBN: 978-1939512079.

[4] Weir, Alan J., Lebesgue Integration and Measure, Cambridge University Press, Cambridge, 1996. ISBN: 0-521-09751-7

55


