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Background

For f : X → X , we can iterate f :

f n = f ◦
(n)
· · · ◦f

and consider sequences of iterates called orbits:

{zi}∞i=0 = {f i (z0)}∞i=0 = {z0, f (z0), f 2(z0), . . . }.

Definition

Suppose f : C → C is a polynomial map. The filled Julia set,
K (f ), is the set of points whose orbits by f are bounded.

For further reading, see [6, 1].
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A brief thread through history

2012 · · · · · ·• [3] Boyd & Schulz:
fn(z) = zn + c .



Geometric limits of Julia sets

Let fn : C → C by
fn(z) = zn + c ,

▶ where n ≥ 2 is an integer, and

▶ c ∈ C is a complex parameter.

f2,−0.12+0.75i f2,−0.15+i



Geometric limits of Julia sets

Let fn : C → C by
fn(z) = zn + c ,

▶ where n ≥ 2 is an integer, and

▶ c ∈ C is a complex parameter.
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Geometric limits of Julia sets

Let fn : C → C by
fn(z) = zn + c ,

▶ where n ≥ 2 is an integer, and

▶ c ∈ C is a complex parameter.
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Geometric limits of Julia sets

Let fn : C → C by
fn(z) = zn + c ,

▶ where n ≥ 2 is an integer, and

▶ c ∈ C is a complex parameter.
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Geometric limits of Julia sets

Let fn : C → C by
fn(z) = zn + c ,

▶ where n ≥ 2 is an integer, and

▶ c ∈ C is a complex parameter.

f32,−0.12+0.75i f32,−0.15+i



Geometric limits of Julia sets

Let fn : C → C by
fn(z) = zn + c ,

▶ where n ≥ 2 is an integer, and

▶ c ∈ C is a complex parameter.

f64,−0.12+0.75i f64,−0.15+i



Geometric limits of Julia sets

Let fn : C → C by
fn(z) = zn + c ,

▶ where n ≥ 2 is an integer, and

▶ c ∈ C is a complex parameter.

f128,−0.12+0.75i f128,−0.15+i



Boyd-Schulz

fn,c(z) = zn + c

Theorem (Boyd-Schulz, 2012 [3])

Let c ∈ C. Using the Hausdorff metric,

(1) If c ∈ C\D, then lim
n→∞

K (fn,c) = S0 = {|z | = 1}.

(2) If c ∈ D, then lim
n→∞

K (fn,c) = D = {|z | ≤ 1}.

(3) If c ∈ S1, then if lim
n→∞

K (fn,c) exists, it is contained in D.

(3) was further improved in [5] (2015).
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A brief thread through history

2012 · · · · · ·• [3] Boyd & Schulz:
fn(z) = zn + c .

2015 · · · · · ·• [5] Kaschner, Romero, &
Simmons: fn(z) = z2 + c .

2020 · · · · · ·• [4] Brame & Kaschner:
fn(z) = zn + q(z).



More geometric limits of Julia sets

Let fn : C → C by
fn(z) = zn + q(z),

▶ where n ≥ 2 is an integer, and

▶ q is a fixed degree d polynomial.

f200,z2+0.25+0.25i f200,z2+0.45+0.25i



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 4
space

K (q) K (f4,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 8
space

K (q) K (f8,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 16
space

K (q) K (f16,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 32
space

K (q) K (f32,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 64
space

K (q) K (f64,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 80
space

K (q) K (f80,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 180
space

K (q) K (f180,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 360
space

K (q) K (f360,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 720
space

K (q) K (f720,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 1800
space

K (q) K (f1800,q)



The limit set

Kq =
∞⋂
i=0

q−i (D̄) = {z : qi (z) ∈ D̄ ∀i ≥ 0}

S0 = {z : |z | = 1}
Sj = {qj(z) ∈ ∂D and qi (z) ∈ D for i = 1, . . . , j − 1}

K∞ = Kq ∪
⋃
j≥0

Sj
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The limit set

Kq =
∞⋂
i=0

q−i (D̄) = {z : qi (z) ∈ D̄ ∀i ≥ 0}

S0 = {z : |z | = 1}
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Brame & Kaschner

fn(z) = zn + q(z)

Theorem (Brame-Kaschner, 2020 [4])

If deg q ≥ 2, q is hyperbolic, and q has no attracting fixed points
in S0, then

lim
n→∞

K (fn,q) = Kq ∪
⋃
j≥0

Sj .



A brief thread through history

2012 · · · · · ·• [3] Boyd & Schulz:
fn(z) = zn + c .

2015 · · · · · ·• [5] Kaschner, Romero, &
Simmons: fn(z) = z2 + c .

2020 · · · · · ·• [4] Brame & Kaschner:
fn(z) = zn + q(z).

2023 · · · · · ·• Kaschner, Kapiamba, &
W.: fn(z) = (p(z))n + q(z).



Even more geometric limits of Julia sets

Let fn : C → C by

fn(z) = (p(z))n + q(z),
▶ where n ≥ 2 is an integer, and

▶ p, q are fixed polynomials.



Into the Rabbitverse
p(z) = z2 + 0.05 + 0.75i ,
q(z) = z2 − 0.1 + 0.75i ,

n = 4

K (q) K (f4)



Into the Rabbitverse
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n = 8

K (q) K (f8)



Into the Rabbitverse
p(z) = z2 + 0.05 + 0.75i ,
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n = 16

K (q) K (f16)



Into the Rabbitverse
p(z) = z2 + 0.05 + 0.75i ,
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n = 32

K (q) K (f32)
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Into the Rabbitverse
p(z) = z2 + 0.05 + 0.75i ,
q(z) = z2 − 0.1 + 0.75i ,

n = 180

K (q) K (f180)



Into the Rabbitverse
p(z) = z2 + 0.05 + 0.75i ,
q(z) = z2 − 0.1 + 0.75i ,

n = 360

K (q) K (f360)



Into the Rabbitverse
p(z) = z2 + 0.05 + 0.75i ,
q(z) = z2 − 0.1 + 0.75i ,

n = 720

K (q) K (f720)



Into the Rabbitverse
p(z) = z2 + 0.05 + 0.75i ,
q(z) = z2 − 0.1 + 0.75i ,

n = 1800

K (q) K (f1800)



The trouble with Quibbles

Kq=
∞⋂
j=0

q−j
(
p−1(D̄)

)
Q0=

{
p−1(z) : |z | = 1

}
Qj=

{
qj(z) ∈ ∂p−1(D) and qk(z) ∈ p−1(D) for k = 1, . . . , j − 1

}

K∞ = Kq∪Q0∪
⋃
j≥0

Qj
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The trouble with Quibbles

Kq=
∞⋂
j=0

q−j
(
p−1(D̄)

)
Q0=

{
p−1(z) : |z | = 1

}
Qj=

{
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K (fn) = Kq ∪
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Generalization

fn(z) = (p(z))n + q(z)

Theorem 1 (Kaschner, Kapiamba, & W.; 2023)

If p, q are polynomials with deg p, q ≥ 2, and q is hyperbolic with
no attracting periodic points on ∂p−1(D), then

lim
n→∞

K (fn,p,q) = Kq ∪
⋃
j≥0

Qj



A brief thread through history. . . and the future

2012 · · · · · ·• [3] Boyd & Schulz:
fn(z) = zn + c .

2015 · · · · · ·• [5] Kaschner & Romero &
Simmons: fn(z) = z2 + c .

2020 · · · · · ·• [4] Brame & Kaschner:
fn(z) = zn + q(z).

2023 · · · · · ·• Kaschner, Kapiamba, &
W.: fn(z) = (p(z))n + q(z).

2024 · · · · · ·• Kaschner, Kapiamba, &
W.: gn(z) = pn(z) + q(z).



Current work

(p(z))n ̸= pn(z)
powers iterates

Behold, for

▶ p(z) = z2 − 0.1 + 0.75i ,

▶ q(z) = z2 − 0.1 + 0.2i ;

▶ n = 51;

fn = (p(z))n + q(z) gn = pn(z) + q(z)



Immediate issues with subsequential limits
gn(z) = pn(z) + q(z)

p(z) = z2 − 0.123 + 0.745i q(z) = z2 − 0.2− 0.3i

K (gn) for n = 49, 50, 51.

K (gn) for n = 54, 57, 60.



Immediate issues with subsequential limits
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Escaping the Rabbitverse

▶ Suppose p is hyperbolic with periodic
attracting cycle z1, z2, · · · , zk
For each n, there exists some
ℓ ∈ {1, 2, · · · , k} such that

gn(z) = pkm+ℓ(z) + q(z)

≈ zℓ + q(z)

Let Aℓ be the basin of attraction for
zℓ for pk , and A =

⋃k
ℓ=1 Aℓ

Define ĝ(z) : A → C via

ĝ(z) =


q(z) + z1, for z ∈ A1

...
q(z) + zk , for z ∈ Ak .

K(p) for
p(z) = z2 − 0.123 + 0.745i .



Escaping the Rabbitverse

▶ Suppose p is hyperbolic with periodic
attracting cycle z1, z2, · · · , zk

▶ For each n, there exists some
ℓ ∈ {1, 2, · · · , k} such that

gn(z) = pkm+ℓ(z) + q(z)

≈ zℓ + q(z)

Let Aℓ be the basin of attraction for
zℓ for pk , and A =

⋃k
ℓ=1 Aℓ
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Current conjecture

Suppose p is hyperbolic and q(z) + zℓ is hyperbolic for each
ℓ ∈ {1, 2, . . . , k}. For some fixed ℓ, define the subsequence
nm = ℓ+mk . Then

lim
m→∞

K (gnm) =
∞⋂
j=0

ĝ−j(pℓ(A)) ∪
∞⋃
j=0

Jj

where

Jj = {z : ĝ j(z) ∈ J(p) and ĝκ(z) ∈ A for κ = 1, 2, . . . , j − 1}
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