RIGGING NEWTON'S METHOD ## VIDEO BY FERN-MATHS | (1) Given any function f , we want to find a <i>root</i> : some value x such that $f(x) = 0$.
(a) Write the equation for the line tangent to f at a point $x = x_k$. | |---| | (b) Let x_{k+1} be the x-intercept of the tangent line. Using your answer from part (a), write a formula for x_{k+1} in terms of x_k . | | (c) Newton's Method involves sequentially finding x -intercepts of these tangent lines, usi the intercept x_{k+1} as the tangent point to find x_{k+2} , etc. Starting with any guess x will you always find a root? Can you give an example? | | (2) Now we rig Newton's Method with a function, R . (a) Find a function f such that Newton's Method applied to f always gives $x_{k+1} = R(x_k)$ (your answer will involve an integral). | | (b) Find f in the case of $R(x) = -x$. What is the behavior of Newton's Method in the case? | - (3) The juggling function is obtained when $R(x) = 1 \frac{1}{x}$. (a) Prove R(R(R(x))) = x for all x. (b) Find f in this case.