
Math 334 – Differential Equations

Notes on Notes on Diffy Qs, Differential Equations for Engineers, Jǐŕı Lebl

Sections 0.2–3

0 Introduction

0.2 Introduction to differential equations

Differential Equation. A differential equation is an equation with a derivative in it.

Example 1.
d2x

dt2
+ x

dx

dt
= 6t

• What is x?
the dependent variable

• What is t?
the independent variable

y′′ + xy′ = 6x

• What’s the difference between this differential equation and the one before it?
The second used y and x as dependent and independent variables, respectively. Also, the “prime”
notation (rather than Leibniz notation) suppresses the independent variable (y, rather than y(x)).

Solution. A solution for a differential equation is a function that satisfies the equation (makes the
equation true). Any single solution is called a particular solution. The set of all solutions is called
the general solution.

Example 2. The differential equation
y′ = 3x2

is very boring. Why?
You can solve this equation by integrating (finding the antiderivative). This is a Calculus 1 problem.

• A particular solution is y = x3.
• The general solution is y = x3 + c.

Why is the equation in Example 1 much harder to solve?
There are many reasons. Here are some:

• There is a second derivative.
• The independent and dependent variables are all mixed together1 in the equation.

We will learn when and how differential equations can be solved analytically (almost never).

Barring that, we will learn how to approximate and use solutions.

1We should probably come up with some more specific terminology.
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Who cares about these things? Right.

Real world problem

abstract

zz
Mathematical

Model
solve

//
Mathematical

Solution

interpret

dd

Example 3. P (t) = Cekt is the general solution for
dP

dt
= kP . Check this.

• What does this have to do with the flow chart above?

Example 4. Show y = cosh t = 1
2 (e

t+e−t) is a particular solution for
d2y

dt2
−y = 0 on the interval (−∞,∞).

Example 5. For what values of r is y = ert a solution for y′′ + y′ − 6y = 0?
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0.3 Classification of differential equations

Here is a terrible wall of definitions. Enjoy!

Order. The order of a differential equation is the order of the highest derivative that appears in the
equation. More specifically,a a differential equation of order n is of the form

F

(
t, x(t),

dx

dt
, . . . ,

dnx

dtn

)
= 0,

where F is a function.

aor is this more generally?

Autonomous. If F (as above) is independent of t, the differential equation is called autonomous.
Otherwise, it is called nonautonomous.

Linear and homogeneous. A differential equation of order n is called linear if it is of the form

F

(
t, x(t),

dx

dt
, . . . ,

dnx

dtn

)
= an(t)

dnx

dtn
+ · · ·+ a1

dx

dt
+ a0x+ b(t),

where the ai’s and b are all functions of t. If b(t) = 0, then the differential equation is called
homogeneous; otherwise, it is called nonhomogeneous.

“What is all this madness?” you may ask. Well, different classifications of differential equations require
different techniques and strategies.

Example 6. Classify the following differential equations:

• t2
d2y

dt2
+ t

dy

dt
+ 2y − sin t = 0

2nd order, linear, nonhomogeneous, nonautonomous

• y′′ + yy′ = 0

2nd order, nonlinear, autonomous
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Sections 1.1–2

1 First order ODEs

In case no one mentioned it, and ODE is an ordinary differential equation, which is just a differential
equation with no partial derivatives (those are called PDEs). The word “ordinary” is just used to let you
know that since there are no partial derivatives, you won’t have to do anything too silly. While this course
deals exclusively in ODEs, we maintain the right to do silly things.

1.1 Integrals as solutions

Which is easier to solve?

• dy

dx
= f(x, y)

• dy

dx
= f(x)

Why?

The latter is much easier. Just integrate both sides of the equation with respect to x. Then

y =

∫
f(x) dx+ C

is the general solution.

Example 1. Solve y′ = xex. What do you need to identify a single particular solution?

You need a specific value for the integration constant, C. You can get this from an initial condition.

Example 2. Solve y′ = xex, y(0) = 0.

IVP. An IVP, or initial value problem, is an ODE with enough initial conditions to identify a single
particular solution.
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Can we solve
dy

dx
= f(y)? Why is this harder?

Here’s a fun fact from Calculus 1 that will help:

Inverse Function Theorem. If y(x) is continuously differentiable and has a nonzero derivative at
x0, then (

y−1
)′

(y(x0)) =
1

y′(x0)
.

That is, the derivative of the inverse at y(x0) is the reciprocal of the derivative at x0.

This is a really neat theorem. Draw the graph of a nonlinear one-to-one function and it’s inverse. Do you
see why this theorem is true?

Don’t forget that
dy

dx
= f(y). When x(y) = y−1 is differentiable, we have

dx

dy
=
(
y−1

)′
and

1

y′
=

1

f(y)
.

Then from the Inverse Function Theorem, we know that

dx

dy
=

1

f(y)

(when y is continuously differentiable and has a nonzero derivative). Now we can just integrate with respect
to y.

Example 3 (Exercise 1.1.6). Solve y′ = (y − 1)(y + 1), y(0) = 3.
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1.2 Slope fields

Recall that, in general, first order equations are of the form

y′ = f(x, y),

where f is any function you like, depending on both x and y. If f depends on just one of these variables, we
saw in the last section that you can just integrate to solve.

What does the equation y′ = f(x, y) mean? It takes x and y values and assigns (by f) a value to y′, often
interpreted as slope. That is, first order ODEs assign a slope to each point in the xy-plane.

We can graph this!

Example 4. Let y′ = 2x. Plot the slope field by hand and find the general solution. Compare them.

Google “bluffton slope field” and plot a slope field by way of internet.

Example 5. Plot a slope field (via computer) for y′ = x/y. Beware computers.

What’s wrong here?

Example 6. Plot a slope field (via computer) for y′ = 2
√
|y|. Beware intuition.

What’s wrong here?

Note y = 0 is a solution, but so is

y(x) =

{
x2, x ≥ 0
−x2, x < 0

Then (0, 0) has two solutions through it. That’s messed up, right?

Given a problem, there are two basic questions:

1. Is there a solution?

2. If so, how many?
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Picard’s Theorem.a If f(x, y) is continuous and
∂f

∂y
exists and is continuous near some (x0, y0),

then a solution to the IVP
y′ = f(x, y), y(x0) = x0

exists near x0 and is unique.

aAlso commonly referred to as the Fundamental Theorem of Existence and Uniqueness (FEU)

Example 7. x′ = x1/3, x(0) = 0 is a sufficiently simple-looking IVP, right? Show x = 0 is a solution, and
for any nonnegative real α,

x(t) =

{ (
2
3 t
)3/2

, |t| < α
0, t ≤ −α, α ≤ t

is also a solution. There are an uncountable number of solutions to this IVP.

What is happening here?

Example 8. Show y′ = 1 + y2, y(0) = 0 has a unique solution y = tanx on (−π/2, π/2).
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Sections 1.3

Recall in Section 0.2–3 we agreed
dy

dx
= f(x, y) tends to be harder than

dy

dx
= f(x), That doesn’t mean they

are impossible.

Seperable Equation. An first order ODE is separable if it can be written as y′ = f(x)g(y), where
f and g are functions

Separable equations can be solved with Integration!

1.3 Separable equations

How can we manipulate
dy

dx
= f(x)g(y) to solve the ODE?

We can just divide both sides by g(y) to get
1

g(y)

dy

dx
= f(x).

Do you want to just multiply dx by both sides? What does that even mean?

We make use of our best friend from Calculus 1: the u-substitution. Well, not a u in this case, but still a
substitution. Remember that y = h(x) is just a function of x, so if we integrate both sides of

1

g(h(x))
h′(x) = f(x),

we have ∫
1

g(h(x))
h′(x)dx =

∫
f(x)dx

However, we haven’t finished our substitution! Since y = h(x), we have dy = h′(x)dx, so∫
1

g(y)
dy =

∫
f(x)dx

Despite the wondrous power of separable equations, there is still one minor issue. What happens when we
can integrate, but we can’t solve for y in a reasonable way?

We don’t!

Implicit Solutions. A solution to an ODE not of the explicit form y = h(x).

Example 1. Solve (1 + x)dy − ydx = 0.
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We found an implicit solution. ln |y| = ln |1 + x|+ C

We may not want to, but we can actually solve for y for this solution. Let’s do that.

Example 2. Solve sec (x)dy = x cot (y)dx

Example 3. You’ve found a dead body! Its temperature is 88.6◦ F at 2am and 78.6◦ F at 3am. The ambient
air temperature is 68.6◦ F from midnight to 3am. Estimate the time of death.
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Recall in the last section we looked at some “easy” cases of y′ = f(x, y). Here’s a slightly less easy one.

First Order Linear Equation. An ODE of the form

dy

dx
+ P (x)y = f(x)

is called first order linear. Additionally, we call this standard form for the first order linear equation.

1.4 First Order Linear Equations

How can we solve
dy

dx
+ P (x)y = f(x)?

There are 5 easy steps!

1. Write the equations in standard form. Observe that
dy

dx
+ P (x)y looks like a product rule happened.

2. Find the integrating factor. Our book calls this r(x), but most places call it µ(x). Regardless,

r(x) = µ(x) = e
∫
P (x)dx

3. We now multiply both sides of the equation by the integrating factor, µ(x).

µ(x)

(
dy

dx
+ P (x)y

)
= µ(x) (f(x))

µ(x)
dy

dx
+ µ(x)P (x)y = µ(x)f(x)

4. Here’s the cool part. This simplifies to

d

dx

(
µ(x)y

)
= µ(x)f(x)

5. Integrate both sides with respect to x.∫
d

dx

(
µ(x)y

)
dx =

∫
µ(x)f(x) dx

y =
1

µ(x)

∫
µ(x)f(x) dx
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Let’s look at an example!

Example 1. Find a general solution and find an interval on which the solution is defined.

dy

dx
= y + ex

Example 2. Solve x dy = (x sin (x) − y) dx

Example 3. Solve y′ = 2y + x(e3x − e2x) given the initial condition of y(0) = 2.

Example 4. Initially, 50 pounds is dissolved in a large tank holding 300 gallons of water. A brine solution
is pumped into the tank at a rate of 3 gallons per minute, and the well-stirred solution is then pumped
out at the same rate. If the concentration of the solution entering is 2 pounds per gallon, determine the
amount of salt in the tank at time t.

How much salt is present after 50 minutes? After a long time?
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We have learned some really neat tricks to leverage separability and linearity and solve ODEs. When all of
those things fail, here’s the next thing you try:

Homogeneous ODE. A first order ODE is called homogeneous if it can be written as

dy

dx
= f

(y
x

)
.

You may notice that this word has been used before. We give a different definition here because it made
sense to someone at some point. Use context to determine which version of “homogeneous” you’re dealing
with.

1.5 Substitution

How can we solve xy′ + y + x = 0 with initial condition y(1) = 1?

First, note that it is homogeneous:

y′ = −y

x
− 1.

We use the substitution of v = y
x and y′ = v + xv′. This gives us

v + xv′ = −v − 1

This is linear! We find the general solution: x2v = − 1
2x

2 + C. Now, we just need to convert back to y land
and plug in our initial conditions to get

y =
3− x2

2x

Substitution problems are a lot like ice cream. They come in many flavors, and if you have too many, your
brain freezes.

Example 1. Solve the IVP 2yy′ + 1 = y2 + x, y(0) = 1.

Let v = y2 ! Why? Because v′ = 2yy′.
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You may find it helpful to know the contents of this chart:

If you see... Try this substitution!

xy′ v =
y

x
yy′ v = y2

y2y′ v = y3

(cos y)y′ v = sin y

(sin y)y′ v = cos y
y′ey v = ey

Example 2. Bernoulli’s Equation!

dy

dx
+ P (x)y = f(x)yn, n ∈ R
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Recall,

Autonomous Equations. First order autonomous ODEs are of the form

dx

dt
= f(x)

Also recall,

Newton’s Law of Cooling.
dx

dt
= −k(x−A)

Note that x = A is a constant solution to any Newton’s Law of Cooling problem.

1.6 Autonomous Equations

Constant solutions for an ODE are called equilibrium solutions (or equilibria solutions if you have more than
one).

Any point x0 on the x-axis where
dx

dt
= f(x0) = 0 is called a critical point. Why?

Equilibria correspond to critical points!

Stability of Equilibria.

An equilibrium is stable (or attracting) if nearby solutions approach it as t→∞.
unstable (or repelling) if nearby solutions move away from it as t→∞.

Equilibria that are not stable or unstable are called shunt (or indifferent).
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Compare the phase diagrams or phase portraits of the following ODEs equilibria.

x′ = −0.3(x− 5) and x′ = 0.1x(5− x)

x = 5 (attr.) x = 5 (attr.)
x = 0 (rep.)

5

5

0

How do we construct these phase diagrams?

1. Leave an empty circle at the critical points.

2. Put an arrow down if
dx

dt
< 0

3. Put an arrow up if
dx

dt
> 0

4. If any critical points/equilibria are stable fill in the circle!

Example 1. Logistic growth with harvesting:

dx

dt
= kx(M − x)− h where k = 1 and M = 2

dx
dt = x(2− x)− h. The critical points are x = 1±

√
1− h
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Sometimes, we can’t find a solution. If I just pick an ODE out of a bag, it is not going to be solved through
any of the techniques we’ve looked at so far. So what can we do?

1.7 Euler’s Method

Euler’s Method is a way to approximate x(t1), x(t2), x(t3), .. where t0 < t1 < t2 < ....

We accomplish this through the definite integral of both sides of

x′ = f(t, x)

x(t1)− x(t0) =

∫ t1

t0

f(t, x(t))dt

This implies that

x(t1) = x0 +

∫ t1

t0

f(t, x(t))dt.

We can use your favorite Riemann Sum evaluation technique. We’ll use the Left Hand Rule.

What is x(t1)? It’s our first approximation; let’s call it x1.

x(t1) = x1 ≈ x0 + (t1 − t0)f(t0, x(t0))

≈ x0 + sf(t0, x(t0)), where s = t1 − t0

We tend to make our ti’s evenly spaced apart to create consitent step size s.

How can we approximate x(t2) (which we call xw)?

x2 ≈ x1 + (t2 − t1)f(t1, x(t1))

≈ x1 + sf(t1, x(t1))

How can we approximate x(tn) (that is, xn)?

xn ≈ xi+1 + sf(ti, x(ti)), i ∈ {0, 1, ..., n− 1}

What do we need to consider when determine how many steps to take in our Euler Method approximation?

We get more accuracy with more steps. However, there are also more calculations involved with every
additional step, and each repetition will introduce more integral error making then feed that error into the
next approximations. This is potentially very bad.
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Let’s look at an example!

Example 1. x′ = x, x(0) = 1. Given a step size of 0.2 and t0 < t < 1.

For a more in depth analysis of step size, see page 24 of Lebl.

Example 2. Computer Time
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1.8 Exact Equations

Let f : R2 → R, so we could graph graph f in R3 by z = f(x, y). We could also take the total differential of
f as follows:

z = f(x, y)

dz =
∂f

∂x
dx +

∂f

∂y
dy.

For example, if f(x, y) = x2 + y2, then
dz = 2x dx + 2y dy.

Thus, 2x dx + 2y dy = 0 has
f(x, y) = x2 + y2 = c

as the general solution.

Exact Equations. The differential equation

M(x, y) dx + N(x, y) dy = 0

is an exact differential equation if the left hand side of the equation is an exact differential.

In other words, M(x, y) dx + N(x, y) dy = 0 is an exact differential equation if there is some function
f : R2 → R, often called a potential function, such that

df = M(x, y) dx + N(x, y) dy.

Criterion for Exactness. Let M(x, y) and N(x, y) be continuous with continuous partial derivatives
in some rectangular region R in R2. Then M(x, y) dx + N(x, y) dy = 0 is exact if and only if

∂M

∂y
=

∂N

∂x

Why? Note that M(x, y) dx + N(x, y) dy = 0 is exact if and only if there is a function f such that

M =
∂f

∂x
and N =

∂f

∂y
.

Then by Clairut’s Theorem, this is true if and only if

∂M

∂y
=

∂2f

∂y∂x
=

∂2f

∂x∂y
=

∂N

∂x
.
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Example 1. Is
dy

dx
=
−2x− y

x− 1
exact?

Example 2. Solve 2xy dx + (x2 − 1) dy = 0

Example 3. Solve (sin(y)− y sin(x)) dx + (cos(x) + x cos(y)− y) dy = 0

Example 4. Solve (3x2y + ey) dx + (x3 + xey − 2y) dy = 0

2



Example 5. Solve (3x cos(3x) + sin(3x)− 3) dx + (2y + 5) dy = 0

Example 6. Solve (x + y) dx + (x ln(x)) dy = 0

Example 7. Solve y(x + y + 1) dx + (x + 2y) dy = 0

3



Example 8. Solve (−xy sin(x) + 2y cos(x)) dx + (2x cos(x)) dy = 0

Example 9. Solve 2xex − y + 6x2 = x dy
dx
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2.1 Second Order ODEs

Second Order Linear ODEs A second order linear ODE is of the form

A(x)y′′ + B(x)y′ + C(x)y = D(x)

However, we can always make our lives easier and divide by A(x) to achieve

y′′ + p(x)y′ + q(x)y = f(x)

Superposition Theorem. If y1 and y2 are solutions to the second order linear homogenous equation
y′′ + p(x)y′ + q(x)y = 0, then for any constants C1, C2,

y = C1y1 + C2y2

is also a solution.

Let’s take another look at the Fundamental Theorem for Existence and Uniqueness!

Fundamental Theorem for Existence and Uniqueness (revisited). Suppose p, q, and f are
continuous on some interval I and a, b0, b1 are constants such that a ∈ I. The ODE

y′′ + p(x)y′ + q(x)y = f(x)

has exactly one solution y on I satisfying y(a) = b0 and y′(a) = b1.

Example 1. Verify y = b0 cos (kx)+ b1
k sin (kx) is a unique solution to to y′′+k2y = 0, y(0) = b0, y

′(0) = b1.

What does it mean for a set of functions to be linearly dependent?

A set of functions y1, . . . , yn defined on an interval I are linearly dependent if there are scalars c1, . . . , cn
that are not all zero such that ∀x ∈ I,

c1y1 + · · ·+ cnyn = 0.
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Example 2. Show sinh (x) and cosh (x) are linearly independent. (Recall, sinh (x) = 1
2 (ex − e−x) and

cosh (x) = 1
2 (ex + e−x). )

Theorem. Let p, q be continuous functions and y1, y2 solutions to the ODE

y′′ + p(x)y′ + q(x)y = 0.

Then y = c1y1 + c2y2 is the general solution to the ODE.

Example 3. Find the general solution to y′′ + y = 0

c1 cos(x) + c2 sin(x)

What do we do when we already have one solution?

y2 = y1

∫
e−

∫
p(x) dx

y21
dx
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2.2 Constant Coefficient Second Order Linear ODEss

Constant Coefficient Second Order Linear ODEs A second order linear ODE is of the form

ay′′ + by′ + cy = f(x)

However, for right now we are going to focus on the much easier to solve:

ay′′ + by′ + cy = 0

Let’s guess a solution of y = erx. What does this achieve?

ar2erx + brerx + cerx

Note erx 6= 0 Therefore we can just look at ar2 + br+ c = 0 This is called the ”auxillary” or ”characteristic”
equation.

Recall from prior courses,

r =
−b±

√
b2 − 4ac

2a

What can our roots look like?

We can have 2 real roots, 1 repeated real root, or 2 complex roots!

We have a strategy to find solutions based on the form our roots take.

• 2 Real Roots:
Show er1x and er2x are linearly independent.
Now our solution is just y = C1e

r1x + C2e
r2x.
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• 1 Real Root:
Show erx and erx will not be linearly independent.
Let’s use Exercise 2.1.8!
Just try throwing an x on one of our terms to get y = C1xe

rx + C2e
rx.

• 2 Complex Roots:
We have e(α+iβ)x and e(α−iβ)x.
However, this isn’t complex analysis! Let’s invoke Euler!
Ultimately, our solutions are y = C1e

αx cos(βx) + C2e
αx sin(βx).

Example 1. Find the general solution for

y(4) + y(3) − 3y′′ − 2y′ = 0.

The auxiliary equation is r(r + 2)(r2 − r − 1) = 0, so the general solution is

y = c1 + c2e
−2x + c3e

1
2x cos

√
5

2
x+ c4e

1
2x sin

√
5

2
x.

2



Math 334 – Differential Equations

Notes on Notes on Diffy Qs, Differential Equations for Engineers, Jǐŕı Lebl
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2.5 Nonhomogeneous Equations

Constant Coefficient Linear Nonhomogeneous ODEs. A linear nonhomogeneous ODE with
constant coefficients is of the form

any
(n) + · · ·+ a1y

′ + a0y = f(x),

where f(x) ̸= 0.

Lebl calls the LHS of this equation Ly, where L is a linear transformation. That is,

Ly = any
(n) + · · ·+ a1y

′ + a0y,

where L is the function that turns a function y into this very specific linear combination of y and its
derivatives. Can you show that L is a linear transformation?

To solve a nonhomogeneous equation, first solve the associated homogeneous equation,

any
(n) + · · ·+ a1y

′ + a0y = 0,

and call the general solution yc (c for “complementary”). That’s right. Just pretend that f(x) was never
there.

Next, find a particular solution for the original nonhomogeneous equation (drat! f(x) has returned!)

any
(n) + · · ·+ a1y

′ + a0y = f(x),

and call it yp (p for “particular”).

Theorem. The general solution to the nonhomogeneous equation

any
(n) + · · ·+ a1y

′ + a0y = f(x)

is
y = yc + yp,

where yc is the general solution to the associated homogeneous equation, and yp is any particular
solution to the original nonhomogeneous equation.

Proof of this theorem follows from the linearity of L.

One question remains: How do we get that one particular solution we need? Yep. That is the hard part.
We’ll study two methods:

1. The Method of Undetermined Coefficients1

2. Variation of Parameters2

1This is glorified guess and check.
2This is often called “Var of Parm,” which definitely sounds more delicious.
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2.5.1 The Method of Undetermined Coefficients

Example 1. Find the general solution for

y′′ − 4y′ − 12y = sin 2t.

Note first that yc = c1e
6t + c2e

−2t. Let’s guess

yp = A sin 2t,

so A is our “undetermined coefficient.” We have to determine A. This guess won’t work. What goes wrong?

Let’s guess again:
yp = A sin 2t+B cos 2t,

which has twice as many undetermined coefficients. Ugh.

A =
1

40
and B = − 1

20

Example 2. Find the general solution for

y′′ − 4y′ − 12y = 2t3 − t+ 3.

Note first that again, yc = c1e
6t + c2e

−2t. Let’s guess

yp = At3 +Bt2 + Ct+D,

which has twice as many undetermined coefficients as the last one. Double ugh.

A = −1

6
, B =

1

6
, C = −1

9
, and D = − 5

27

Example 3. Find the general solution for

y′′ − 4y′ − 12y = te4t.

Note first that again, yc = c1e
6t + c2e

−2t. Let’s guess

yp = Ce4t(At+B),

or better still:
yp = e4t(At+B).

Why can we just skip the C?

A = − 1

12
, andB = − 1

36

Superposition Revisited.a Let y1 be a solution for

any
(n) + · · ·+ a1y

′ + a0y = f1(x),

and y2 be a solution for
any

(n) + · · ·+ a1y
′ + a0y = f2(x),

Then for any constants k1 and k2, k1y2 + k2y2 is a solution for

any
(n) + · · ·+ a1y

′ + a0y = k1f1(x) + k2f2(x).

aNow with more super-ness!
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2.5.2 Variation of Parameters

Here’s a fun thing:

The Wronskian. Let y1 and y2 be continuous on some interval I. Then the Wronskian of y1 and
y2, denoted by W (y1, y2), is given by

W (y1, y2) =

∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ .

Theorem: This is not the Wronskian you’re looking for.
Let y1 and y2 be continuous on some interval I. Then W (y1, y2) = 0 for all x ∈ I if and only if y1
and y2 are linearly dependent on I.

Example 4. Show that y1 = er1t and y2 = er2t are linearly independent if and only if r1 ̸= r2.

Do the Wronskian!

Var of parm is great if you have a second order nonautonomous, nonhomogeneous equation and you really
like integrals. Suppose first that you have

yc = c1y1 + c2y2,

the complementary solution for the second order nonhomogeneous equation

y′′ + p(x)y′ + q(x)y = f(x).

Note that we’ve normalized our equation so that there is no coefficient on y′′. The big advantage of Var of
Parm is that you don’t have to have constant coefficients. Indeed, p and q can be any gross function of x
you want.

Since we have yc, all we need is yp, so let’s guess

yp(x) = u1(x)y1(x) + u2(x)y2(x),

where u1 and u2 are nonconstant functions of x. This looks gross, so we’ll suppress all the (x)’s and have

yp = u1y1 + u2y2.

To get started, we need derivatives of yp. Well,

y′p = u′
1y1 + u1y

′
1 + u′

2y2 + u2y
′
2,

which is, again, gross. Now we’re gonna make an assumption that may seem like a total scam. This is fine.
I promise it will be fine. . . eventually. For now, though, let’s just assume

u′
1y1 + u′

2y2 = 0.

3



With this assumption, we now have

y′p = u1y
′
1 + u2y

′
2 and

y′′p = u′
1y

′
1 + u1y

′′
1 + u′

2y
′
2 + u2y

′′
2 .

Plugging this in to our original nonhomogeneous equation, we have

u′
1y

′
1 + u1y

′′
1 + u′

2y
′
2 + u2y

′′
2 + p(x)(u1y

′
1 + u2y

′
2) + q(x)(u1y1 + u2y2) = f(x)

After some algebra, we have
u′
1y

′
1 + u′

2y
′
2 = f(x),

which is pretty great. Now we can combine this with the assumption we made earlier. It turns out that
making this assumption does eliminate some of the possible solutions. Do we care? Not really. We only
need one yp! Now we have two equations:

u′
1y1 + u′

2y2 = 0 and

u′
1y

′
1 + u′

2y
′
2 = f(x)

Solving the first equation for u1, we have

u′
1 = −u′

2y2
y1

.

Substituting this into the second equation, we have(
−u′

2y2
y1

)
y′1 + u′

2y
′
2 = f(x) or, after algebra, u′

2 =
y1f(x)

y1y′2 − y2y′1

We could do some similar algebra to solve for u1. Ultimately, we end up with

u1 = −
∫

y2f(x)

y2y′2 − y2y′1
dt and u2 =

∫
y1f(x)

y2y′2 − y2y′1
dt

This gives us the following fun theorem:

Var of Parm. For the ODE
y′′ + p(x)y′ + q(x)y = f(x)

with complementary solution yc = c1y1 + c2y2, a particular solution is

yp(x) = −y1

∫
y2f(x)

W (y1, y2)
dt+ y2

∫
y1f(x)

W (y1, y2)
dt.

Example 5. Find the general solution for

y′′ − 2y′ =
ex

x2 + 1
.

y = c1e
x + c2xe

x − 1

2
ex ln(1 + x2) + xex tan−1 x

4



Example 6. Find the general solution for

2y′′ + 18y = 6 tan 3x.

y = c1 cos 3x+ c2 sin 3x− 1

3
cos 3x ln | sec 3x+ tan 3x|

Example 7. Find the general solution for

xy′′ − (x+ 1)y′ + y = x2.

y = c1e
x + c2(x+ 1)− x2 − 2x− 2 = c1e

x + (c2 − 2)(x+ 1)− x2

5
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Section 3.1

3.1 Systems

A B

x is the amount in A
y is the amount in B

dx

dt
= f(x, y, t) and

dy

dt
= g(x, y, t)

Example 1. x′ = x and y′ = x− y

One of these is significantly easier than the other. We find x to be x(t) = C1e
t. We can substitute that back

into our other function to achieve
y′ = C1e

t − y.

This is linear! We find

y =
C1

2
et + C2e

−t.

Example 2. x′ = 2y − x and y′ = x

Note: y′′ = x′. We can now substitute this into the second equation to achieve the lovely y′′ = 2y − y′ or
even more lovely y′′ + y′ − 2y = 0. We can use the techniques from Chapter 2 to find y(t) = C1e

−2t + C2e
t.

Then Differentiate this solution to find x. x(t) = −2C1e
−2t + C2e

t.

Example 3. Turn the third order equation, y′′′ = 2y′′− t2y′+cos(t)y, into a system of first order equations.

1



Math 334 – Differential Equations

Notes on Notes on Diffy Qs, Differential Equations for Engineers, Jǐŕı Lebl

Section 3.3

3.3 Linear Systems

Given a nth order linear or linear system of n equations in n variables,

x′1 = a11(t)x1 + . . . + a1n(t)xn + f1(t)

...
...

. . .
...

...

x′n = an1(t)x1 + . . . + ann(t)xn + fn(t)

Let’s write it in matrix equation form:

x
′
1
...
x′n

 =

a11(t) . . . a1n(t)
...

. . .
...

an1(t) . . . ann(t)


x1

. . .

xn

+

f1(t)
...

fn(t)


This gives us

x′ = Ax + f

What are some key things to keep in mind about this?

• Everything is dependent on t.

• A solution is a vector of functions x.

Superposition Revisited If x’ = Ax is an n× n homogenous system, then any linear combination
of solutions is a solution. Moreover, if x1, . . . , xn are linear independent, then

x = c1x1 + · · ·+ cnxn

is the general solution.

Note

x = c1x1 + · · ·+ cnxn =
[
x1(t) . . .xn(t)

] c1...
cn

 = X(t)c

We call X(t) the fundamental matrix (solution). It is a matrix whose columns are n linearly independent
solutions to the system.

1



Example 1. Given x′ = −2x + 2y and y′ = 2x− 5y. Build the fundamental matrix X.

This translates to the matrix equation of

x′ =

[
−2 2
2 5

]
x

Note that x =

[
x
y

]
Show x1 = e−t

[
2
1

]
and x2 = e−6t

[
−1
2

]
are linear independent solutions. Thus,

X =

[
2e−t −e−6t
e−t 2e−6t

]

Example 2. Given the results from the previous example, solve the IVP with x(0) = −8 and y(0) = 1. So

we have X(0) =

[
−8
1

]
. Thus, [

2 −1
1 2

]
c =

[
−8
1

]
⇒ c =

[
−3
2

]

2
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3.4 Eigenvalue Method

Recall Example 1 from how we found the solutions to x′ = −2x+ 2y and y′ = 2x− 5y to be

X =

[
2e−t −e−6t
e−t 2e−6t

]
.

Note that we can also write this matrix as x1 = e−t
[
2
1

]
and x2 = e−6t

[
−1
2

]
.

We have solutions that are of the form
x = ertu.

How often does this happen? Or rather when is x = ertu a solution for x′ = Ax?

We can find x′ = rertu.
We can substitute this in to find that

rertu = Aertu

Thus,
Au = ru

or Au− ru = 0

Eigenvalue Method
In summary, x = ertu is a solution to x′ = Ax iff ∃r and u 6= 0 such that

Au = ru or (A− rI)u = 0.

Note that these only exist for r such that det (A− rI) = 0.

In this case, r is an eigenvalue of A and u is the eigenvector corresponding to r.

Example 1. A =

[
−2 2
2 −5

]
. Find the eigenvalues and eigenvectors!

We need to observe the det(A− rI), so we want to set (2 + r)(5 + r)− 4 = 0. We find r = −1,−6.

We find the eigenvector for r = −1 to be

[
2
1

]
.

We find the eigenvector for r = −6 to be

[
−1
2

]
. Thus,

x1 = e−t
[
2
1

]
and x2 = e−6t

[
−1
2

]
.

1



Example 2. x′ = Ax. Given A =

[
−1 1
8 1

]
and λ = ±3.

We should get u+ =

[
1
4

]
and u− =

[
1
−2

]

Theorem. If r1, . . . , rn are distinct eigenvalues for An×n and ui is the eigenvector corresponding to
ri, then ui, . . . ,un are linearly independent!

Proof.

Corollary. If r1, . . . , rn are distinct eigenvalues for An×n and ui is the eigenvector corresponding to
ri, then er1tui, . . . , e

rntun are linearly independent solutions to x′ = Ax !

Example 3. x′ =

[
−2 2
2 −5

]
x has a general solution through superposition.

That’s great, but how do we handle complex roots as a solution to our characteristic polynomial?

Example 4. x′ = Ax. Given A =

[
−1 2
−1 −3

]
.

2



Example 5. x′ = Ax. Given A =

[
2 −4
2 −2

]
.

Complex Eigenvalues. If x(t) = ertu = e(α+iβ)t(a+ ib) is a solution for x′ = Ax with A ∈M2×2,
then

x1(t) = eαt cosβta− eαt sinβtb and

x2(t) = eαt sinβta + eαt cosβtb

are linearly independent solutions.

That’s even greater, but how do we handle repeated roots as a solution to our characteristic polynomial?

Example 6. x′ = Ax. Given A =

[
1 −1
4 −3

]
.

3



Math 334 – Differential Equations

Notes on Notes on Diffy Qs, Differential Equations for Engineers, Jǐŕı Lebl
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3.5 Two dimensional systems and their vector fields

As we saw before, we can make slope fields if we have autonomous ODEs. Suppose our first order system is
autonomous:

dx

dt
= f(x, y)

dy

dt
= g(x, y)

for some functions f and g. Again, note that both x and y are functions of the same independent variable,
t. If we look at just the (x, y) plane, we have

dy

dx
=

dy/dt

dx/dt
=

g(x, y)

f(x, y)
,

which is called the phase plane equation.

This is important: We can get away with ignoring the t axis in our phase plane specifically because the
ODEs are autonomous.

Phase planes have two major uses:

1. We can get information about the system by “plotting points” like slope fields.

2. We can solve the system qualitatively in some cases.

Example 1.
x′ = −x
y′ = −2y

dy

dx
=
−2y

−x
Do not “cancel the negatives” here.

Example 2.
x′ = x
y′ = 2y

dy

dx
=

2y

x
Same slopes as before, but opposite orientation!

1



Example 3.
x′ = −y(y − 2)
y′ = (x− 2)(y − 2)

dy

dx
=

(x− 2)(y − 2)

−y(y − 2)
=

(x− 2)

−y
, which is separable!

y2 + (x− 2)2 = c

Bluffton this one: https://bluffton.edu/homepages/facstaff/nesterd/java/slopefields.html

Equilibia. A point (x0, y0) where x′ = y′ = 0 is called a critical point or equilibrium point. The
solution x(t) = x0, y(t) = y0 is called an equilibrium solution. The set of all critical points is the
critical set.

Example 4. Find all critical points in the previous examples.

Example 5.
x′ = x2 − 2xy
y′ = 3xy − y2 Critical set: {(0, 0)}

Let’s assume our autonomous system is also linear and homogeneous, so we have

x′ = ax + by
y′ = cx + dy

, or x′ = Ax, where A =

[
a b
c d

]
.

Solutions to x′ = Ax are parametric (or vector-valued) functions x : R→ R2

x(t) =

[
x(t)
y(t)

]
,

so they appear as curves in the phase plane. Equilibria solutions are constant solutions (where all derivatives
are 0), so a solution is an equilibrium if and only if

Ax = 0,

which happens if and only if x ∈ kerA.

Since kerA always contains 0, we know that 0 is always an equilibrium solution.

When are there other, nontrivial equilibrium solutions? Only when detA = 0.

The detA = 0 situation is more complicated (take MA337!), so we’ll assume detA 6= 0. That is, we’re
looking at systems of the form x′ = Ax, where detA 6= 0. Thus, 0 is the only equilibrium for these systems.

Commence cases!

Case 1: Two distinct real eigenvalues

X(t) =
[
eλ1tu eλ2tv

]
=

[
u1e

λ1t v1e
λ2t

u2e
λ1t v2e

λ2t

]
,

where λ2 < λ1 and u, v are eigenvectors of λ1, λ2 respectively.

The eigenvectors produce solutions called eigensolutions:

x(t) = c1ue
λ1t or[

x(t)
y(t)

]
=

[
u1e

λ1t

u2e
λ1t

]
.

We have
x(t)

y(t)
=
v1
v2

, so solution curves lie on the straight line

y =
v2
v1
x.

Thus, eigensolutions are always straight lines in the phase plane.

2



What about other solutions? Note that x(t) = c1e
λ1tu + c2e

λ2tv, so

y(t)

x(t)
=

c1u2e
λ1t + c2v2e

λ2t

c1u1eλ1t + c2v1eλ2t
=

u2 + c2
c1
v2e

(λ2−λ1)t

u1 + c2
c1
v1e(λ2−λ1)t

Since λ2 − λ1, we can take the limit

lim
t→∞

y(t)

x(t)
=

u2
u1
.

If λ2 < λ1 < 0, then x(t) and y(t) both decay exponentially, so

lim
t→∞

x(t) = lim
t→∞

y(t) = 0.

Thus, our solution x(t) approaches zero tangent to the eigensolution with eigenvector v

Stable and Unstable Nodes. If the eigenvalues of A ∈ M2×2 are real, distinct, and negative
(positive), then the phase plane of x′ = Ax is called a stable (unstable) node and the origin is an
attractor (repeller).

Fun fact: Tangency of solution curves near the origin in on the eigenvector associated to the eigenvalue with
the smallest magnitude.

Example 6. A =

[
−2 −1
−1 −2

]
has λ = −3,−1 with respective eigenvectors

[
1
1

]
and

[
−1

1

]
.

Example 7. A =

[
−2 −1
−1 −2

]
has λ = 3, 1 with respective eigenvectors

[
1
1

]
and

[
−1

1

]
.

3



Case 1b: Two distinct real eigenvalues and λ1 < 0 < λ2

Stable and Unstable manifolds. If the eigenvalues of A ∈ M2×2 are λ1 < 0 < λ2, then the
eigensolution associated to λ1 < 0 is called the stable manifold. The eigensolution associated to
λ2 > 0 is called the unstable manifold. The associated phase plane is called a saddle node.

Example 8. A =

[
1 1
1 −1

]
has λ = ±

√
2 with eigenvectors

[
1±
√

2
1

]
.

Example 9.
x′ = by
y′ = cx

with b, c > 0

Case 2: Complex eigenvalues

If A ∈M2×2, has eigenvalue λ = α+ iβ with β 6= 0 and associated eigenvector a + ib, then

x(t) = c1x1(t) + c2x2(t)

= c1e
αt (cosβta− sinβtb) + c2e

αt (sinβta + cosβtb)

= eαt
[

(c1a1 + c2b1) cosβt+ (c2a1 − c1b1) sinβt
(c1a2 + c2b2) cosβt+ (c2a2 − c1b2) sinβt

]
,

If α = 0, then this is, as we all know, the parametric equation of an ellipse. There are three subcases:

α < 0 α = 0 α > 0

4



Centers and Spirals. If the eigenvalues of A ∈M2×2 are λ = α±iβ with β 6= 0, then the associated
phase plane is called a stable spiral when α < 0, a center when α = 0, and an unstable spiral when
α > 0.

If α 6= 0, then x(t) is scaled by eαt, causing growth (or decay) of the solutions away from (or toward) the
origin.

Note: orientation of a spiral (clockwise or counterclockwise) or direction on ellipses is not clear from eigen-
stuff. You must test a point!

Example 10. A =

[
0 −4.34

0.208 −0.078

]
has λ = −0.039 + 0.949i as an eigenvalue. Thus, it’s phase plane is

a stable spiral since Reλ = −0.039 < 0.

Note that A

[
1
0

]
=

[
1
−2

]
, so the spiral is spinning counterclockwise.

Example 11. A =

[
1 13
−2 −1

]
has λ = ±5i.

Let’s put this all into a convenient chart!

Eigenvalues Phase Plane
real, both pos. unstable node
real, both neg. stable node

real, opposite signs saddle (stable/unstable nanifold)
pure imaginary center (ellipses!)

complex, pos. real part unstable spiral
complex, neg. real part stable spiral

Example 12.
x′′ = −3x + y
y′′ = 2x − 2y

Let w = x′ and z = y′. Then

x′ =


x′

w′

y′

z′

 =


0 1 0 0
−3 0 1 0

0 0 0 1
2 0 −2 0

 .
Check A has eigenvalues λ = ±i,±2i.

5
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3.6 Two Dimensional Systems Applications

Example 1. Here is a example model. How can we turn this into a system of equations and solve it?

First, let’s pretend one of these carts isn’t really there.

1
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Section 3.9.2

3.9.2 Var of Parm for Nonhomogeneous Systems

There are a lot of really cool things in Section 3.9. Alas, this is all we have time to cover.

Consider the nohomogeneous, nonautonomous linear system

x′ = Ax + f,

where A ∈Mn×n(C1(R)).1 As one might expect, the general solution is of the form

x = xc + xp,

where xc is the general solution to the associated homogeneous system x′ = Ax, and xp is any particular
solution to the original nonhomogeneous system. In particular, we have

xc(t) = X(t)c,

where X(t) is the fundamental matrix for x′ = Ax and c ∈ Rn.

As you surely expect, we’ll use var of parm to get xp. We’ll guess

xp(t) = X(t)c(t),

noting that our “constant”’ vector c(t) depends on t. This is a vector of functions now, analogous to the
functions u1 and u2 from var of parm days of old. We just need to find the vector c(t) so that our guess for
xp(t) is a solution to x′ = Ax + f. Substituting, we have

LHS : x′p(t) = X′(t)c(t) + X(t)c′(t)
= A(t)X(t)c(t) + X(t)c′(t)

RHS : A(t)xp(t) + f(t) = A(t)X(t)c(t) + f(t),

so
A(t)X(t)c(t) + X(t)c′(t) = A(t)X(t)c(t) + f(t),

which simplifies to X(t)c′(t) = f(t). Since X(t) is invertible2,

c(t) =

∫
X−1(t)f(t) dt,

Thus,

xp(t) = X(t)

∫
X−1(t)f(t) dt,

where as with Var of Parm before, we choose, for simplicity’s sake, c = 0 for our integrating constant.

1These are just n× n matrices whose entries are continuously differentiable functions of the independent variable (probably
t).

2WHY?
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Var of Parm for Systems. If A(t) and f(t) are continuous in some interval I, then

x(t) = X(t)c + X(t)

∫
X−1(t)f(t) dt,

is the general solution to x′ = Ax + f.

Example 1. Solve x′′ + x = cos 2t system-style.

Here’s s fundamental fact3 you may have forgotten: If f is continuous on [a, b] and

F (t) =

∫ t

a

f(s) ds,

then F ′(t) = f(t) on [a, b]. In particular, when we’re defining c(t) on [a, b], we should4 really be writing

c(t) =

∫ t

a

X(s)f(s) ds.

3Theorem.
4If Newton saw what we did before, he’d probably make the ghost of Leibniz haunt us.
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Let’s look at the nonhomogeneous IVP

x′ = Ax + f, x(t0) = x0.

We know the general solution is

x(t) = X(t)c + X(t)

∫ t

x0

X−1(s)f(s) ds.

Note that we’ve chosen to start our integral at x0. The Fundamental Theorem of Calculus let’s us choose,
and this is a good choice. Look what happens when we apply the initial condition:

x0 = x(t0) = X(t0)c + X(t0)

∫ t0

x0

X−1(s)f(s) ds

= X(t0)c.

Thus, we have
c = X−1(t0)x0

so

x = X(t)X−1(t0)x0 + X(t)

∫ t

x0

X−1(s)f(s) ds.

Example 2. Solve
x′ = −2x + 2y = e−2t

y′ = 2x − 5y

3
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Integrable Functions I Functions

f : R→ R ⇒ g : R→ R

An operator is just a linear transformation on a vector space of functions (like Pn or C1([a, b])). Oh. In case
you forgot, C1([a, b]) is the set of functions defined on the interval [a, b] that have continuous first derivative.
It’s totally a vector space. You should check. Here’s an integral operator:

I : C1([a, b])→ C1([a, b]) by

I(f) =

∫
f(x) dx

You should verify that I is a linear transformation. When your done, you should be sad that you can’t make
a nice matrix representation for I because C1([a, b]) is infinite dimensional. Sorry. That is very sad.

Hey! Define I : Pn → Pn+1 by I(f) =
∫
p(x) dx. There. Now you can make a matrix representation for I.

6.1 Laplace Transform

L(f(t)) :=

∫ ∞
0

e−stf(t)dt

This is a function of s. People usually use capital letters for Laplace transformed functions:

F (s) = L{f(t)}.

Why is this relevant to Differential Equations?

• Apply L to both sides of the equation.

• Solve the new equation for F (s).

• Apply L−1 to solve the original equation to get f(t).

Let’s do an example!
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Example 1. L{1}

L {1} =

∫ ∞
0

e−stdt = lim
b→∞

∫ b

0

e−stst

= lim
b→∞

(
−e−st

s
|b0
)

= lim
b→∞

(
−e−sb

s
+

1

s

)
1

s

for s > 0

Another one.

Example 2. L{t}

Another one.

Example 3. L
{
e−3t

}

Common Laplace Transforms!

•
L {1} =

1

s

•
L {tn} =

n!

sn+1

•
L
{
eat
}

=
1

s− a
•

L {sin(kt)} =
k

s2 + k2

•
L {cos(kt)} =

s

s2 + k2

2



Laplace transform Fun Facts!

L{αf(t) + βg(t)} = αL{f(t)}+ βL{g(t)}
Example 4. L{3t− 5 sin(2t)}

Inverse Laplace Transform

L−1 {F (s)}

What are some cool things about the Inverse Laplace Transform?

• The table works in reverse...

• L−1 is also linear.

Example 5. L−1
{

4

s
+

6

s5
− 1

s+ 8

}

Example 6. L−1
{(

2

s
− 1

s3

)2
}

Example 7. L−1
{

10s

s2 + 16

}

Example 8. L−1
{

s+ 1

s2 − 4s

}
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First Translation Theorem Let a be any real number. Let F (s) denote L{f(t)}. Then,

L
{
eatf(t)

}
= F (s− a)

Reason:

L
{
eatf(t)

}
=

∫ ∞
0

e−steatf(t)dt

=

∫ ∞
0

e−(s−a)tf(t)dt

Example 9. L
{
e7tt3

}

Example 10. L
{
e−2t cos(4t)

}

Example 11. L−1 {F (s− a)}

Example 12. L−1
{

1

s2 + 2s+ 5

}
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Derivatives of Transforms:
n = 1, 2, 3, ..

L{tnf(t)} = (−1)n
dn

dsn
F (s)

Example 1. L
{
t2 sin(kt)

}
d2

ds2
(

k

s2 + k2
). . .

6ks2 − 2k3

(s2 + k2)3

How does the Laplace Transform of Derivatives work?

L{f ′(t)} =

∫ ∞
0

e−stf ′(t)dt = · · · = −f(0) + sL{f(t)}

But what about the Laplace Transform of a second derivative?

L{f ′′(t)} =

∫ ∞
0

e−stf ′′(t)dt = · · · = s2F (s)− sf(0)− f ′(0)

Okay that’s pretty neat. I think I see a pattern; can we generalize this?

L
{
f (n)(t)

}
= snF (s)− sn−1f(0)− sn−2f ′(0)− · · · − fn−1(0)

1



Example 2. Find L{y′′ − 4y′ + 5y} given y(0) = 1 and y′(0) = −1.

L{y′′ − 4y′ + 5y} = L{y′′} − 4L{y′}+ 5L{y}
= (s2Y (s)− s+ 1)− 4(sY (s)− 1) + 5Y (s)

= (s2 − 4s+ 5)Y (s)− s+ 5

Unit Step Function:

U(t− a) =

{
0, 0 ≤ t < a

1, t ≥ a

How does the Unit Step function interact with another function?

U(t− a)f(t) It “turns f off” for t < a

Second Translation Theorem:

L{f(t− a)U(t− a)} = e−asF (s)

Example 3. L{sin(t)U(t− 2π)}

= L{sin(t− 2π)U(t− 2π)}
= e−2πsL{sin(t)}

=
e−2πs

s2 + 1

2



Example 4. L−1
{
e−πs/2

s2 + 9

}

Example 5. L−1
{

e−2s

s2(s− 1)

}
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Example 1. L−1
{

2
s5+s3

}
2

s5+s3 = 2
s3(s2+1) L

−1
{

2
s5+s3

}
= L−1

{
2
s3

}
· L−1

{
1

s2+1

}
= t2 ∗ sin(t) =∫ t

0
(τ)2 sin(t− τ)dτ BY PARTS MAGIC L−1

{
2

s5+s3

}
= t2 − 2 + 2 cos(t)

The Convolution operation (∗) is defined for two functions f, g that are piecewise continuous on [0,∞)
as

(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ)dτ.

Example 2. Given f(t) = et and g(t) = sin(t). Find f ∗ g.

f ∗ g =

∫ t

0

eτ sin(t− τ)dτ

=BY PARTSMAGIC

= sin(t− τ)eτ |t0 + cos(t− τ)eτ |t0 −
∫ t

0

eτ sin(t− τ)dτ

→∫ t

0

eτ sin(t− τ)dτ =
sin(t− τ)eτ + cos(t− τ)eτ

2
|t0∫ t

0

eτ sin(t− τ)dτ =
et − sin(t)− cos(t)

2

Fun Facts!

• (cf) ∗ g = f ∗ (cg) = c(f ∗ g)

• (f ∗ g) ∗ h = f ∗ (g ∗ h)

• f ∗ g = g ∗ f

1



Funnest Fact!
L{(f ∗ g)(t)} = L{f(t)}L{g(t)} = F (s)G(s).

which implies

L−1{F (S)G(S)} = f ∗ g.

Example 3. Find (in terms of t) L−1
{

1
(s−1)(s+4)

}
using Convolution. We have

F (s) =
1

s− 1
⇒ f(t) = et

G(s) =
1

s+ 4
⇒ g(t) = e−4t

L−1{ 1
(s−1)(s+4)} = et ∗ e−4t. Let’s Convolve!

et ∗ e−4t =

∫ t

0

eτe−4(t−τ)dτ

=

∫ t

0

e5τ−4tdτ

=
e5τ−4t

5
|t0

=
et

5
− e−4t

5

=
1

5
[et − e−4t]

Example 4. Let’s figure out L{
∫ t
0

cos(τ)dτ}
Let’s set g(t− τ) = 1.

L
{∫ t

0

cos(τ)dτ

}
= L{1 ∗ cos(t)}

= L{1} · L{cos(t)}

=
1

s
· s

s2 + 1

=
1

s2 + 1

This answer looks pretty familiar right?

1

s2 + 1
= L{sin(t)}

Okay, does this make sense?. Let’s actually evaluate this integral!∫ t

0

cos(τ)dτ = sin(t)− sin(0) = sin(t)

So this was really
L{sin(t)}

the whole time!

2



Note the power of making g(t) = 1! In general, we will get

L
{∫ t

0

f(τ)dτ

}
=
F (s)

s
.

Example 5. Computer Visualization Time! What is the convolution really? Before we answer that.
Let’s think about what Integrals are. They help us find the area under a curve. Okay so we are looking at
the area of something. So what is going on in the integrand? Our f stays the same and then we multiply
by a g that is being shifted by t.

As we look at the The Boxes, we are performing f ∗ g. Our f is the blue box in the center that is staying
in place. The moving red graph is the g. As t moves the area shared between the two graphs changes. The
black line tracks the value of the integral at each of these locations. All of these values in aggreagate form
the convolution f ∗ g

Figure 1: The Boxes
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As we look at image 2, we see going down the left column then the right step by step what the convolution
looks like graphically. We have two functions x(t) and h(t). However, we need to compose one of these with
−t to get h(−t) We see the two graphs overlaid with different ti’s. All of the these ti’s help us form the
function generated by x ∗ h

Figure 2: image 2

4



As we look at image 3, we are seeing f ∗g and g∗f vertically sliced. It highlights the value of the convolution
stays the same regardless of the order.

Figure 3: image 3

Example 6. Let’s do some Mathematica examples
LaplaceTransform Documentation UnitStep Documentation Convolve Documentation

LaplaceTransform[t^4 Sin[t], t, s];

LaplaceTransform[E^(-t), t, s];

Plot[UnitStep[t] , {t,-10,10}];

Convolve[Cos[t]UnitStep[t],t^3UnitStep[t],t,y];

Convolve[Sin[t]UnitStep[t],t^2UnitStep[t],t,y];

5

https://reference.wolfram.com/language/ref/LaplaceTransform.html
https://reference.wolfram.com/language/ref/UnitStep.html
https://reference.wolfram.com/language/ref/Convolve.html
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