Math 334 — Differential Equations

Notes on Notes on Diffy Qs, Differential Equations for Engineers, Jiti Lebl

Sections 0.2-3

0 Introduction

0.2 Introduction to differential equations

Differential Equation. A differential equation is an equation with a derivative in it.

Example 1.

e o vy ey
e What is z? QO/@ngfg{MJ( UW{M Cﬂz. . )
e /z,_ \J’Sy vs "y

o What is t? IMJW“‘JW+ Vour oho dx

y' +xy =6z

e What’s the difference between this differential equation and the one before it?

Highor edor! Also, old (e D)

Solution. A solution for a differential equation is a function that satisfies the equation (makes the
equation true). Any single solution is called a particular solution. The set of all solutions is called
the general solution.

Example 2. The differential equation
y = 3a? ODf siwg le W;Lf"‘“J‘“T
\}p.)\rlfk}f’l{-

is very boring. Why?

e A particular solution is S hied C’“*M{_S PO - p\/w.““a[’le ndep wded
e The general solution is  (lunkwewn cms'\umb (X ke m:l"aw\ \jwuju'—s
e ol Solukiwms

Why is the equation in Example 1 much Tharder to solve?

We will learn when and how differential equations can be solved analytically (almost never).

Barring that, we will learn how to approximate and use solutions.

1We should probably come up with some more specific terminology.



Who cares about these things? Right.

Real world problem

Mathematical solve Mathematical
Model Solution
(apprormete)
Kt . dp .
Example 3. P(t) = Ce"" is the general solution for e kEP. Check this.
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e What does this have to do with the flow chart above?

d2
Example 4. Show y = cosht = %(e’ +e~") is a particular solution for Eg —y = 0 on the interval (—oo, 00).

a ] &7
%= %,(ctd-(-e'%): ACKE )= T 4e 7/

Example 5. For what values of r is y = €™ a solution for y” + ¢y’ — 6y = 0?
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0.3 Classification of differential equations

Here is a terrible wall of definitions. Enjoy!

Order. The order of a differential equation is the order of the highest derivative that appears in the
equation. More specifically,* a differential equation of order n is of the form

dx d"x
F <t,$(t),a,,dt—n> = O,

where F' is a function.

%or is this more generally?

Autonomous. If F' (as above) is/independent of ¢, the differential equation is called autonomous.

Otherwise, it is called nonautonomous. H/‘L - L‘pw M Ve J/HL

Linear and homogeneous. A differential equation of order n is called linear if it is of the form

dx d"z d"z dx
F <1f,av(t)7 E”dt_"> = a"<t)d? toota— + apx + b(¢),

where the a@;’s and b are all functions of ¢. If b(t) = 0, then the differential equation is called
homogeneous; otherwise, it is called nonhomogeneous.

“What is all this madness?” you may ask. Well, different classifications of differential equations require
different techniques and strategies.
Example 6. Classify the following differential equations:
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Sections 1.1-2

1 First order ODEs

In case no one mentioned it, and ODE is an ordinary differential equation, which is just a differential
equation with no partial derivatives (those are called PDEs). The word “ordinary” is just used to let you
know that since there are no partial derivatives, you won’t have to do anything too silly. While this course
deals exclusively in ODEs, we maintain the right to do silly things.

1.1 Integrals as solutions

Which is easier to solve?

dy
b dr = f(x,y)
dy_
d dr = f(x)
Why?

Example 1. Solve ¢y = ze®. What do you need to identify a single particular solution?

Example 2. Solve ¢y’ = ze®, y(0) = 0.

IVP. An IVP, or initial value problem, is an ODE with enough initial conditions to identify a single
particular solution.




d
Can we solve d—y = f(y)? Why is this harder?
x

Here’s a fun fact from Calculus 1 that will help:

Inverse Function Theorem. If y(x) is continuously differentiable and has a nonzero derivative at

Tg, then .
—1\/ _

That is, the derivative of the inverse at y(xg) is the reciprocal of the derivative at xg.

This is a really neat theorem. Draw the graph of a nonlinear one-to-one function and it’s inverse. Do you
see why this theorem is true? S S\r
o
< Jec-
dy

Don’t forget that e f(y). When z(y) = y~! is differentiable, we have //EF’ T

/ M=:K

Then from the Inverse Function Theorem, we know that

(when y is continuously differentiable and has a nonzero derivative). Now we can just

Example 3 (Exercise 1.1.6). Solve ¢/ = (y — 1)(y + 1), y(0) = 3. ‘
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1.2 Slope fields

Recall that, in general, first order equations are of the form

y/ = f(x,y),

where f is any function you like, depending on both z and y. If f depends on just one of these variables, we
saw in the last section that you can just integrate to solve.

What does the equation ¢y = f(x,y) mean? It takes x and y values and assigns (by f) a value to ¢/, often
interpreted as slope. That is,

We can graph this!

Example 4. Let 3y’ = 2z. Plot the slope field by hand and find the general solution. Compare them.

Yff ?G¢JCC o W 0wkt~ \) Z%:P(K./)

e
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Google “bluffton slope field” and plot a slope field by way of internet. '\ ; 5
o
Example 5. Plot a slope field (via computer) for ¢y’ = x/y. Beware computers. Jc)
» Mo e
What’s wrong here? , \) C S
cobolems’
o uthe Slope

r?
: MuHWlL ‘)o{ms‘
Example 6. Plot a slope field (via computer) for y' = 2/|y|. Beware intuition.

What’s wrong here?

Given a problem, there are two basic questions:



p ; Y(Y) e

. . . 0 . . .
Picard’s Theorem.® If f(z,y) is continuous and 8_f exists and is continuous near some (zg, yo),
Y

then a solution to the IVP
A

v = f(x,y), yl(wo) =m0

exists near zy and is unique.

2Also commonly referred to as the Fundamental Theorem of Existence and Uniqueness (FEU)

Example 7. 2/ = z'/3, 2(0) = 0 is a sufficiently simple-looking IVP, right? Show x = 0 is a solution, and
for any nonnegative real «,
2,\3/2
wty={ (G, ltl<a
0, t<—a,a<t

is also a solution. There are an uncountable number of solutions to this IVP.

What is happening here?

2/, ot JeFed

A N R
f(l,x) Pal Iy 32 wk:cﬁ DW
" oA ‘,_U,,-tor)'.{"‘eﬂ

Example 8. Show 3’ =1+ %2, y(0) = 0 has a unique solution y = tanx on (—7/2,7/2).
_—
2
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d d
Recall in Section 0.2-3 we agreed d—y = f(z,y) tends to be harder than d—y = f(x), That doesn’t mean they
x x

are impossible.

Seperable Equation. An first order ODE is separable if it can be written as y' = f(x)g(y), where
f and g are functions

Separable equations can be solved with Integration!

1.3 Separable equations

d
How can we manipulate d—y = f(2)g(y) to solve the ODE?
x

Do you want to just multiply dx by both sides? What does that even mean?

vody
40D i T

\/: h(g\ J‘Y = h'(z)d'l(. j \ h\(ﬂcj@,‘
Ly = $6) = ) ainlo)
. gaa))h(r) P ) xz}m »

EN Xé%b&y: l\ﬂx)&y

Despite the wondrous power of separable equations, there is still one minor issue. What happens when we
can integrate, but we can’t solve for y in a reasonable way?

Implicit Solutions. A solution to an ODE not of the explicit form y = h(z).

Example 1. Solve (1+z)dy —ydz =0. = ((f%)dy = ‘fﬂl?‘ = ]/YJLV - ljf; dx

— ﬂul‘(lﬁ/ﬁ«{}wlfc
\{: Ca(“)a



We may not want to, but we can actually solve for y for this solution. Let’s do that.

[ x A.)L = LS‘{;M‘(JY .:,jz( cos X &)(

—"*&‘( = secy

v COI;Y
ﬂw l}}ecyf o Ysmg toosx +C
oec :C&P(K9‘~Wx+cosxj

Example 2. Solve sec (z)dy = z cot (y)dx

Example 3. You've found a dead body! Its temperature is 88.6° F at 2am and 78.6° F' at 3am. The ambient

air temperature is 68.6° F from midnight to 3am. Estimate the time of death.
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Recall in the last section we looked at some “easy” cases of ¢y = f(x,y). Here’s a slightly less easy one.

First Order Linear Equation. An ODE of the form

dy

2L+ Pla)y = f()

is called first order linear. Additionally, we call this standard form for the first order linear equation.

1.4 First Order Linear Equations

2 "% . p[x)y*gf’f):

) Duwse by 0
There are 5 easy steps! /fﬁ/) /- 392)

W le Stowderd T - dbc 90) gl
o ‘N o e —
_l:JMc'J ;n(é’grw[—-‘hﬂ Rolor K /_/ P(Z)Y = F0

> L«mfc> J/agtxwf/ [ike o @ﬂr\u;‘uci- rode_

d
How can we solve d—y + P(x)y = f(x)?
x

—_

o

d@iﬂlﬁté
- M udtiply both sides oF stowod Pomn by M

/Mx\ %‘Lwlx) Pldy :/‘4[7‘)79(7C>

w

1 Unde profuck v-le fz{/“{?‘) /] - Wy - W)/;
A = Plul)y + &
ﬁ{ﬂ(x)y]:/ﬂlk)yl’*) CEE
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Let’s look at an example!

Example 1. Find a general solution and find an interval on which the solution is defined.
dy _ @ [, _.x
de 7 te & 171°¢

L Ay
/1/1(1{55 f,J f:f,j ;f/ﬁx

- ¢ ‘[l -ﬂﬂyf%i

Example 2. Solve xdy = (xsin (x) — y) dz

l, Y .
X %;'f 2 fsmx g =2 FY eysxsw > L ge Ehx [x#0)
"S%d"( lwl)(l \ -i
B = e = K T N— XY 4y =%Xshyx —> T RSAX
f}' ? 7 dy [KYJ
K Smx st <
> Xy= stmxoﬂ% S eax T R E Txeosx ©HE TC
0 —sinx Dy s Ttesx "ﬂ‘_"_s_':—‘— « C_";
Example 3. Solve 3’ = 2y + x(e3® — ¢2%) given the initial condition of y(0) = 2.
[ 2 -2 X 1‘: ~ ~+ c
¥ -y xo?¥~xe’( /J{K)Ze
—) (=3
—2x
= =K ~ e - - X \J
Lo aie > e wt e
< TVeP {;\‘L el
tX Q"‘ ( 22 3% X l}‘ "
- - - x
‘o Zuﬁ — [ = 72 *Xﬁ He «3e

Example 4. Initially, 50 pounds is dissolved in a large tank holding 300 gallons of water. A brine solution
is pumped into the tank at a rate of 3 gallons per minute, and the well-stirred solution is then pumped
out at the same rate. If the concentration of the solution entering is 2 pounds per gallon, determine the
amount of salt in the tank at time ¢.

How much salt is present after 50 minutes? After a long time?

ALD  qumok oF solt @ Fue b [ 1bs)

3 ‘Jt 1l 33,{ Al s MO
A ™ — #——L-—"—-_— = —_— —l-?)?
't {_.(WL Lmi V\\ %:_ = [ J’% [ lh ‘Bok nin 300 %J.
At =G
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oo



Mem (2 Sept-
Ko
vew:
Yepralde & -8
(x)é(y)

Sg}g‘“:&y&x)&
x

o L‘lme
.
dy _Ll;)“(/)y = (%( )
Hﬂ%‘/u(x) ) tﬁﬂxmx
X



! fle Day & Werd Sebos”

Math 334 — Differential Equations

Notes on Notes on Diffy Qs, Differential Equations for Engineers, Jiti Lebl
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We have learned some really neat tricks to leverage separability and linearity and solve ODEs. When all of
those things fail, here’s the next thing you try:

Homogeneous ODE. A first order ODE is called homogeneous if it can be written as
dy _ y)
do / (x '

You may notice that this word has been used before. We give a different definition here because it made
sense to someone at some point. Use context to determine which version of “homogeneous” you're dealing
with.

1.5 Substitution

How can we solve xy’ + y + = = 0 with initial condition y(1) = 17

Subtract 7, dividt Ly H 2 ey y <

—t

‘. _ V' + %V =%
- Y xY = -1 ’% Hes eqn odso  Luear-. So w'e%&
We codd use lupeon ovkert: Do Tegebmg Fockor wikld o clar 4
b -x*
Mmf(luﬁfv - or awoshibke = Y= ?33:; (bL&& TUC t solue Tor Gb
V= 3& = Y= xV
y'= Vv

\| e &ww&m{’ UMM}J{, %
e rlu;“{}-w"\ Al U/-’ Vv
Substitution problems are a lot like ice cream. They come in many flavors, and if you have too many, your
brain freezes.

Example 1. Solve the IVP 2yy’ +1 = y? + z, y(0) = 1.
~> Nt [iucan {

U:‘ll - \}‘: 2\{‘(!
m&#;l—uhmu,ﬂ
\f‘«—[;\]f’% AN ‘e

et k)N
<, [,,erl, })\x c e

A
+YX €

S V= _é;‘ S&(;_{~€:ﬁl’ﬂ ;(l) _:::

ﬁ}(%f*;//%‘*wj

D s Gt

=) l= 000*0

= =

Cex*v

v



You may find it helpful to know the contents of this chart:

If you see... | Try this substitution!
’ _ ¥
xy v==
x
yy' v =y
vy v=y’
(cosy)y’ v =siny
(siny)y’ v = cosy
y'eY v=¢eY
Example 2. Bernoulli’s Equation!
d
d::Z + P(x)y = f(x)y", meR

subo: V= \{@ NoT - | sy wistoke
v'= (1w ™ \{:

B:‘“bv\() \ll*P(ﬂj?H?f)ym

UL T ey pG)

04 PRy = 5

\)' + (W) PR v = T (1v) Lincoc |
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I(;Qea: we (o fug/:/a.,(%wjy 5)1&7 oMoy equs wo &D.’t/:n}wf/&bm,

Recall,

Autonomous Equations. First order autonomous ODEs are of the form

e _ Mo indepp vacabls
- =flz) & e

Also recall,

Newton’s Law of Cooling.

dat —h(z - 4) /Ar%l‘mﬁvmuﬁ

Note that & = A is a constant solution to any Newton’s Law of Cooling problem.

1.6 Autonomous Equations

Constant solutions for an ODE are called equilibrium sJoh@or equilibria solutions if you have more than
oner:

d
Any point zy on the x-axis where d—f = f(zo) = 0 is called a critical point. Why?

derwodive s }eﬂ‘. Jee Cule. |

Stability of Equilibria.

An equilibrium is  stable (or attracting) if nearby solutions approach it as t — oo.
unstable (or repelling) if nearby solutions move away from it as ¢t — oo.

Equilibria that are not stable or unstable are called shunt (or indifferent).

(-71001" W’“'{WS“‘HMQ, \aﬁ/L\&Ulw K antoraman €qns 'H/moualn ’\/L SJWOL{ DQ

o \kiw[ / e(tuil?lor iww pmd\)



Compare the phase diagrams or phase portraits of the following ODEs equilibria.

\ ' =-03(x—-5) and 2’ =0.1z(5-2)
¥ ?‘éx X=0@ x=5 x'=0 @ 0 ed S
/(\J\\V\—‘ }(Lb
D\
wﬁk XB\G n }(r L0
x &0 @5 X'=o
X >0
)(l:Q . . 5 [pl/\wrw{”.ma x
‘so —O—0 ¥ -o %d\m% &b
X e T
/ )(L Ly 6 -
X5 © _ >t
Loama\ﬂt- Ww-Q ] \
How do we construct these phase diagrams? \
1.
2.
3.
4.
Example 1. Logistic growth N
v
Z—f :kx(M—x)@where k=1and M =2
(’Mau\all she L (
% %vnm%:a ) K= K(Z"KB_L\

K:g‘r\aw% Cow shoad , -2t VY- 4l
M: Cg.d‘r*(‘.ﬂ’} W(’l‘}r - X t 2y "*\t\ -2

W= horvetey | N T rer

(//—\ fB',ﬁuf(‘w‘-;w ‘HA““/{

=1 W
\/\ o ]A:O 04 h &\ . no ek fo;mLs,(
N
\ YK o diMern
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O/\ N X. T
| 0-G x 0 O
a % N.{)%l%uo)
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Sometimes, we can’t find a solution. If I just pick an ODE out of a bag, it is not going to be solved through
any of the techniques we’ve looked at so far. So what can we do?

1.7 Euler’s Method

Euler’s Method is a way to approximate x(t1), z(t2), z(t3), .. where tg < t1 < t2 < ....

We accomplish this through the definite integral of both sides of

¥ = f(t,z) T beguebe, TTC Seps
ty
o(t) — () = / £t 2())dt
to
This implies that A{ams’/‘ Certunly mpesible

ot) = w0t [ S(tad | &7 b dly pmpd

We can use your favorite Riemann Sum evaluation technique. We’ll use the Left Hand Rule.

What is z(¢1)? It’s our first approximation; let’s call it x;.

75, = Ko +[L;£)Q({;., X
—

Step S

We tend to make our t;’s evenly spaced apart to create consitent step size s.

How can we approximate z(t2) (which we call z,,)?

XLk st [, %)

How can we approximate z(t,) (that is, 2,,)?

2 R N

What do we need to consider when determine how many steps to take in our Euler Method approximation?



Let’s look at an example! m

e :
Example 1. 2’ = z,2(0) = 1. Given a step size of 0.2 an< t<1
[7 3% W"J. 90[!4; Mé)3 c.t

xlt) =
xn= e

x
= 1728+ 0201 728> = 7 071306

- - al1) =12 t=os
bv@lx/a"t“”?— i e oalt) = h

pool, = o2y =Ly Co
ﬁ:o»b/)(za = Ly v.2(144) = \-728

%6: 2\'073‘0 « o,z( Z.072L) = 2,"‘833?-

For a more in depth analysis of step size, see page 24 of Lebl.

Example 2. Computer Time

Exeel!

v
1)
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1.8 Exact Equations

Let f: R?2 — R, so we could graph graph f in R? by z = f(x,y). We could also take the total differential of
f as follows:

z = flz,y)
_ 9f, 0
dz = axdx—l—aydy.

For example, if f(x,y) = 22 + y?, then

dz = Zxﬂ.x + Qfoqy
Thus, 2z dx + 2y dy = 0 has

as the general solution.

Exact Equations. The differential equation
M(z,y)dz + N(z,y)dy =0

is an ezact differential equation if the [left hand side of the equation is an exact differential.

In other words, M(z,y)drx + N(x.y)dy = 0 is an exact differential equation if there is some function
(f : R2 = R, often called a [potential function,}uch that

df = M(z,y)dx + N(z,y) dy.

Criterion for Exactness. Let M(xz,y) and N(z,y) be continuous with continuous partial derivatives
in some rectangular region R in R%. Then M (x,y)dz + N(z,y) dy = 0 is exact if and only if

oM _ ON

oy Oz

Why? Note that M (x,y)dz + N(z,y)dy = 0 is exact if and only if there is a function f such that

Then by Clairut’s Theorem, this is true if and only if

(7 SYWWA'“‘( US‘\ Par{'w{ CEW:U‘»{'&M

¥E 9
a/ﬁ;“ I 0y



d
Example 1. Is —— =
dx

9y —
y exact?

r—1

(x-Ndy = 2 e1)dx
(L wgdd « (e-Ddy =0

M
?OY ( \/?;;W/H
Example 2. Solve 2zydz + (2% —1)dy =0
ixao{ . %M = l}( 52 ’9‘\/
0¥
Guess o« peieatiod Few
M:§£ - b SMM SZ:;‘JX"X‘("C’[Y)
ok ok N e U R
w So S
T >Ryl
-— L//ﬁ //r/’ X ouswen: Tl Xy I =¢
5 )= ely)= -1+l —
Example 3. Solve (sin(y) — ysin(z)) dz + (cos(z) + x cos(y) —y)dy =0
N W
%M;{ = (o5 - S %"\i =SSy 4ty Exet”

Example 4. Solve (3z%y + e¥) dz + (2 + mey@dy =0

M
L = 3 Zrt\]’ ?)N 3
?7 9=
§= E%%ﬂl“ - &Mo\\t’ SBx el )ik = Pyrxe’+ Oy /'7 de): Xy rxelyT=¢
%4,
v - '3331, . xsfuh ST




Example 5. Solve (3z cos(3z) + sin(3z) — 3)dz + (2y +5)dy =0

’:CJg\S = *muo\ Sqﬂ“““’qﬂu"

Example 6. Solve (x + y)dz + (z1n(x))dy =0

) ,
Q%C{ %’;: lnx + | Vet &CMAL
L_;.“M W 7/

(weq) + nbov G5 = ©
)C/l/"‘(g—%ic - “’LK{Y)

60. ] fY) - Dl * -‘L = _:’__
Zl:)é T =) ﬁ HMY Ly

Example 7. Solve y(x +y+ 1)dx + (x +2y)dy =0

M ,
%:{“: X*Yfl f,\/ %——Vi/— - l war e_}C-OLC/]L

(k2% - ety A feor]

%

U=x7 2 Y-Es dol . d

T

<



Uﬁg{,_ o+ cxp.a" ﬁ——_/—\

Example 8. Solve (jmy sin(z) + 2y cos(z)) dx + (2z cos(z)) dy = 0 Mﬁjf Ez(w%
Qfﬂ = —xSinx + Leesy @—\’ _ w2y sin X+ Dces X
Cx qx

(\:: X% AY: S[\J)u,' :Xlxcow.ly"— lx'fcos(zc)*aﬂ

A5 -
= Lyeesy — Lepsiny +@
T 1eer

| Sl =Rl =<

O

Example 9. Solve 2ze* —y + 622 = ocTciy
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2.1 Second Order ODEs

Second Order Linear ODEs A second order linear ODE is of the form

A(z)y" + B(z)y' + C(z)y = D(x)

However, we can always make our lives easier and divide by A(z) to achieve

N
' + @)y +q(x)y = f(x) Creuevad fmonn

Superposition Theorem. If y; and g5 are solutions to the second order linear homogenous equation
y" + p(z)y’ + q(x)y = 0, then for any constants C1, Cs,

y = Ciy1 + Cayo

is also a solution.

Let’s take another look at the Fundamental Theorem for Existence and Uniqueness!

N Fundamental Theorem for Existence and Uniqueness (revisited). Suppose p,q, and f are
}L\ continuous on some intcm___ﬁ_[ and a, by, by are constants such that a € I. The ODE
O Y P
N2y nast contomn iniked y" +p@)y +q(2)y = f(=)
@"J €‘§ W&lﬁﬁs g Fom !
ac\;\\f\~"%fw} has exactly one solution y on I satisfying y(a) = by and y'(a) = b;.
o

Example 1. Verify y = by cos (kz) + % sin (k) is a unique solution to to y” 4+ k?y = 0,4(0) = by, 3’ (0) = b;.

0 40k TOT0 ) « by o)

dx
oo, Sorpecd : )
W"‘T teryed ‘B,l")'\ . % - —-\(tlﬂaCﬁ(\qa — \(\o‘ guwlic e

S

z y - (‘_kl bﬁ Lot [Kf\ — K‘o,sm(lﬂ)} « }("‘*( b.,”f‘tk'd + l"\l(-s\.,\(_l-‘\x))

\Hﬂ“ \00 cosl(o) + \fY_\; (o) = v, / \{((()\: —\(\aaﬁ‘-”l(‘fﬂ *'0‘ sm(e) = %, |/

What does it mean for a set of functions to be linearly dependent?

\fl VA T M T o ey depondet g 30«1-“'@16'{’2\ (W"Jf JJ%‘“B
'
whew écgm =o \fxeT

O



Example 2. Show sinh (z) and cosh (z) are linearly independent. (Recall, sinh(z) = %(e” — ™) and

cosh (z) = 3(e* +e7). )
C\S‘“l“ () + Clwswﬂ = 5 (e Jﬁ) N P ) < (/‘Ct;\%ﬁ-e/“r (E? o X

=
Sps Buel isw‘«x, ws&x; ofef“woﬂ“\t‘ Then /:o,’\:qz eR . Ml 615;/0 bfxg/’k/
G20 and Cfc‘ =

So C,_S‘LV\,IALK)*C-LCasL\)c >0 0""(7 RS
\/—[/\/
[+ neor
(-b G = Cz——D @ U\E’fiﬂg(,%‘}"(,

Theorem. Let p, g be continuous functions and 1, yo solutions to the ODE

y" +p(2)y +q(z y—g\ﬂhgu/y .rm/afm/mf Solles

Then y = c1y1 + coyo is the general solution to the ODE. Lo ¢, e, el
Example 3. Find the general solution to ¢’ +y = 0
-Shsf %w%{mg h; 1 T\I'—O
‘17,” Cos ¥
<0
fipsune BYOC CEnE T G
= & Shx — = ‘:-CJ‘ =
T, v | = C, bamx = |
Met e Fee x=0
%'_{DW\ x=0
Lb“m'. ML mt!,cmr. o '&‘\M“‘{ \Vtﬂf.i}ﬁﬁ&uk{‘
What do we do when we already have one solution? Tt owdec
. e ol ¢ gLy =0 " iver
\/I Soa gl ke y PRy 17 (}4?1‘))\‘0 0 \unear

LY, M nly, iy .
\(1‘ V() Ylfx) Lo sowe V0D S( gh) 3 e7_l (MERY2) . \l"letha&
L (s
=) i%[/w]; 0
NE
M ?(179\:
e we e

C ’ST(")J" "
' = wix = C&
\ = w - \{7; (,S" X Y

ek 0ot (omby weed e Sﬂ(l’d)

' LY N ll + ol )\J‘ =0
V(1) R g )y + vYor AT P
— d / '
- v (ay/+ ey v’ o )
\fl f V- Sesmhf A

) (
w-v*
>y, W' (2904 ) w=o o
2 Sy Y.X 3—"1[” bx

\{;3 “'|7r < VY,
gt = Ve vt oy

X




Math 334 — Differential Equations

Notes on Notes on Diffy Qs, Differential Equations for Engineers, Jiti Lebl

Sections 2.2-3

2.2 Constant Coefficient Second Order Linear ODEss

Constant Coefficient Second Order Linear ODEs A second order linear ODE is of the form

ay” +by' + cy = f(x)

However, for right now we are going to focus on the much easier to solve:

ay’ +by +cy=0 ()\’b,(j elR

Let’s guess a solution of y = €. What does this achieve?

Aux ;(IEW"[ equs

¢ @ breo)-o
—bt - dac

2 oo

r:

Recall from prior courses,

. —b+ Vb% — dac
- 2a

What can our roots look like?

We have a strategy to find solutions based on the form our roots take.

e 2 Real Roots:
7 f‘L

i . sl udep. |
\/:2 e ; Vo= 6/‘r " = /Z“E“’!Y udep-

(RS V2 X
\/: C ¢ +C e ®



e 1 Real Root:

- de ~fede ok
X e X rx
_ _ cdx - & dx S € v
Y{ - 6 :‘> Yﬂ_— Y‘ K Y X c 5 20K c —Te%
VX X
/\/) \{: Cle + CL)(E’,
e 2 Complex Roots: dl \My Lg.qlow&
(‘\: a{,-("i,gg CEUJW c’ie' - C%9¢is:n&
G o= 10 -
Gripde LBX
\(‘: e P _ meclf’ _ ad)‘(toi o+ 1‘,5:1:}3"‘)
\{9.: " + - emx(cog @1—1:;14[3%) e

Y (1w Y- '(n 1)

- C COSsg)( . = e SME)X =

13=

Example 1. Find the general solution for

TR Soms(

G, So(/ms{

Y‘: C‘e“(',os(}X+c,_cux

5ih % X

(4)+y() 3y" — 2?!—0 Ly eqh

G‘LWSS \{: c

2 ()=

R¥=T

\rb(‘r\ Y‘*fl)

-

.0 -(3
< ~2¢

\{: Cl+ Cze’

+03€,

- Ol

Q. -

e ¢
14

‘e

)

YeE

Tdea Hoghor oodor Grabod e

e  solix d \.\.S‘AMCS
OQ 1uqn(\r‘&*"if- \ﬁoﬂ\‘s l

e dsf¥ cgs

Vte"”*' D.MG( ?qb{‘ﬂ""u:] ﬂ/t. oy C‘i" uyl*a lorﬂ&uc[j

Cown

ox
= Xe
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2.5 Nonhomogeneous Equations

Constant Coefficient Linear Nonhomogeneous ODEs. A linear nonhomogeneous ODE with
constant coefficients is of the form

any™ + - + a1y’ + aoy =@}

where! f(z) # 0.

.

J . "
: - . LL \‘ G.F_“l
Lebl calls the LHS of this equation Ly, where L is a linear transformation. That is, L C C o oum VY 2‘=
Ly = a, (n)+...+a ’+a , SCVWK‘-W“M
y = any 1y + aoy Gek Toes

where L is the function that turns a function y into this very specific linear combination of y and its
derivatives. Can you show that L is a linear transformation?

To solve a nonhomogeneous equation, first solve the associated homogeneous equation,
any™ 4t ay Fagy =0, £ L\FD o LIyl:=0

and call the general solution ¥, (¢ for “complementary”). That’s right. Just pretend that f(z) was never
there.

Next, find a particular solution for the original nonhomogeneous equation (drat! f(z) has returned!)
any(n) + o ary +aoy = D L‘f = ‘E()() o~ L[‘(]‘— )
and call it[y, (p for “particular”). Sowe s Caﬂe& —{—&L K%mromos qu

Theorem. The general solution to the nonhomogeneous equation
any™ + - + a1y’ + aoy = f(x)
is
Y = Ye + Yp,

where y. is the general solution to the associated homogeneous equation, and vy, is any particular
solution to the original nonhomogeneous equation.

Proof of this theorem follows from the linearity of L.

One question remains: How do we get that one particular solution we need? Yep. That is the hard part.
We'll study two methods:

1. The Method of Undetermined Coefficients! A(ﬂa bre snkenssve

2. Variation of Parameters? C'alml.w; ;WM‘-W

IThis is glorified guess and check.
2This is often called “Var of Parm,” which definitely sounds more delicious.




2.5.1 The Method of Undetermined Coefficients

Example 1. Find the general solution for YAzt - (B2t 8 hees 2t “EBsin 2k

y" — 4y’ — 12y = sin 2t. LAt —2Beos 2k
kb
e (e "9\\ =sn2t sm U= (-9A<B -@A) szt (Mwl*
Gt ~24 —(LA+8R —gA-16B
it et oe : u
| 0

Guess (5~ Asn2t « Bee 2b o k-3 ke L
— 10 Y

/q ol ] ‘T;".'U'tes 24- 2B 26 :
v deternin =~ Thsn e~ Heas 2¢
Q‘,J—Qmwf (5) P

bt T, Ly L ey 2
R T

Example 2. Find the general solution for

y" — 4y — 12y = 2t3 —t + 3.
[’)'t - lt \
an

(g
Yoo ALPtBE D :

Y;‘ = IAT28LC V- et G T e LR 2
\p ~ bt~ 23

Example 3. Find the general solution for

Y — 4y — 12y = te'.

Superposition Revisited.® Let y; be a solution for

any(n) 44+ a/ly/ + apy = fl(m)7

and yo be a solution for
any™ + -+ a1y + aoy = fo(2),

Then for any constants k1 and ko, k1ys + koyo is a solution for

any(n) dbooodt aly/ + apgy = k1f1(l') + k2f2(x)'

“Now with more super-ness!




2.5.2 Variation of Parameters

Here’s a fun thing:

The Wronskian. Let y; and y2 be continuous on some interval I. Then the Wronskian of y; and
Y2, denoted by W (y1,y2), is given by

Y1 Y2
Wy, =
(yl y2) ‘ ?/1 yé

Theorem: This is not the Wronskian you’re looking for.
Let y; and yo be continuous on some interval I. Then W(y;,y2) = 0 for all z € I if and only if y;
and y, are linearly dependent on I.

Example 4. Show that y; = ¢ and y = e™2! are linearly independent if and only if 71 # 7.
ot EFA~

e
~ (ren)E (et L(ﬂ“ (‘Z>e
w( leY’J ) d"l&r\t \J“LfnE Sl “he - (\rl_ “ N\
+0 WEer

R o S

Var of parm is great if you have a second order nonautonomous, nonhomogeneous equation and you really
like integrals. Suppose first that you have

Ye = C1Y1 + C2¥2,
the complementary solution for the second order nonhomogeneous equation
y' +p@)y +a(2)y = f(z).

Note that we’ve normalized our equation so that there is no coefficient on y”. The big advantage of Var of
Parm is that you don’t have to have constant coefficients. Indeed, p and ¢ can be any gross function of x

you want.
Since we have y., all we need is y,, so let’s guess

- LL,(K)\{\ A Uzti)\/z
le

where u; and usy are nonconstant functions of z. This looks gross, so we’ll suppress all the (z)’s and have
{
\IP

To get started, we need derivatives of y,. Well,

which is, again, gross. Now we’re gonna make an assumption that may seem like a total scam. This is fine.
I promise it will be fine. .. eventually. For now, though, let’s just assume



With this assumption, we now have

Plugging this in to our original nonhomogeneous equation, we have

After some algebra, we have

which is pretty great. Now we can combine this with the assumption we made earlier. It turns out that
making this assumption does eliminate some of the possible solutions. Do we care? Not really. We only
need one y,! Now we have two equations:

Solving the first equation for u,, we have

Substituting this into the second equation, we have
or, after algebra,

We could do some similar algebra to solve for w;. Ultimately, we end up with

This gives us the following fun theorem:

Var of Parm. For the ODE
Y +p(x)y + q(z)y = f(x)

with complementary solution y. = c1y; + c2y2, a particular solution is

Y1 Hx)
telx) = *‘”fwcy. m‘{ waw,md

\. .

Example 5. Find the general solution for Tpo:

L+l 2¢ y' =2y = .
( () \[U(\i”vg’ - e o 22+ 1

)
Yor et e e

e
- e W é{; ﬁ
e 4
v wé& K TN (P PR

= e

% €,
y: C\C + Clkc /)X&




Example 6. Find the general solution for

2y + 18y = 6 tan 3x.

Example 7. Find the general solution for

ay” — (¢ + 1)y +y=a>
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f kel
3.1 Systems G_)a, ‘(\’”‘?f
— 4 B———
x is the amount in A
y is the amount in B
d d
df f(z,y,t) and di; =g(z,y,t)
Sel S
F\\—{;{k 0'1\9@‘-— BYS]LW\ — +WD Z%ULS
Example 1. 2/ =zandy =2 —y s a5
WA
One of these is significantly easier than the other.
| €
{ = 2 A~ +y = C ¢
peGel |~ ey T
lb L o 2& .
/ut: gxﬁ OQ[jc = - ft7 = e C2
G| 5.6¢7¢ 0
Example 2. 2/ =2y — z and y’ =x
1y~ v \/+Y 27 =0 M (+H
r;’?'[ -t.(
-2t 7 - €
T=ce theT A yoyle “dee Tt Ge

Example 3. Turn the third order equation, y"’ = 2y” — 2y’ +cos(t)y, into a system of first order equations.

2= 2w 5Kt C0>(€§Y

'J( < o X
L“{JM Ed ., X & \‘(‘(}/
Ky 957 e
\ 1 W= 2w —tix ety
=X =y
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3.3 Linear Systems

Given a n'" order linear or linear system of n equations in n variables,

I’l = all(t)ml + ...+ aln(t)xn + fl(t)

~

x, =ani(t)z1 + oo+ apn(O)xn + fu(t)

f[\‘ -
Let’s write it in matrix equation form: &vf“""éj;’ Cﬂ”ﬁ By “ke( \ trgdrb"“(\&f
U
a4 LN
7] ann(t) ... aw@)| [z fi(t)
= ]
xl an1(t) ... ann(t)| |zn ()

S AT T supress M 05!

This gives us A x! ' st w,ﬂw‘]
x' = Ax

What are some key things to keep in mind about this?

B (6
Sgluhws b % v veides & -?msl. KTY,(:UJ

><u
‘?ﬁ

?:\"’“’

K3)
X‘Sxﬂltﬁ

of solutions is a solution. Moreover, if x1, ..., x,, are linear independent, then
X =C1X1 + -+ CcpXp

is the general solution.

Superposition Revisited If x> = Ax is an n x n homogenous system, then any linear combination

\Ju,\-»rs o Tens ~
Note

X=X+t X, = [X1(1) .. X, (1)] | | =X(@)E

(el T
M pder e

e
SN A e

We call X(¢) the fundamental matrix (solution). It is a matrix whose columns are n linearly independent

solutions to the system.

el

de®

¥ 16)

b



Example 1. Given 2’ = —2x + 2y and 3y’ = 2z — 5y. Build the fundamental matrix X.

—2x 2 3 5 . o,
[ K [2“‘55/} : Y;fi]u -5
Sugere v e [T R L]
¢ i - f;ﬂ “l2) o

\JQA‘;?\/ Yla_

Example 2. Given the results from the previous example, solve the IVP with z(0) = —8 and y(0) = 1.

Y

Qli'L‘{r ¢, 1, = 0
(e
e A
Q(le * C’l € R
G - ©
le’:b 4oty - "
gxcltf“ = Lyc
- 6t
Z/> st Crﬁ ¢ fl(zc‘e )QAEL e
- G~ O= Cy= © /

7 60, 6—£:b

s vﬂﬂzﬁﬂlﬁ mﬂigﬁg]ac—[ e

A
2 AR S A
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3.4 Eigenvalue Method

Recall Example 1 from how we found the solutions to x' = -2z + 2y and y = 2z — 5y to be

MJMMM
F) e T

neey MWW&W{' Soliktres o
E ’ .
Note that we can also write this matrix as x; = e~ [J and x; = e [ 2 } ~ A s e
| | N e
We have solutions that are of the form N\ (et . .
X = e"‘tu | 7 77_ : ﬁ
How often does this happen? Or rather when is x = ¢"’u a solution for x’ = Ax?
le \re’”{’u ;i;‘h—i X:@ s L
b Hoo dibeeqg (BB o o -
UH;O P 6”““*“

¢ %wwiwc/ ~ (APC'L)J =

Eigenvalue Method

In summary, x = e"‘u is a solution to x’ = Ax iff 3r and u # 0 such that
= ot wag—iﬁmi
Xie w & vabe Au=ruor (A—rlu=

Note that these only exist for r such that det (A —rI) = 0.

In this case, r is an eigenvalue of A and u is the eigenvector corresponding to r.

2
)

&&Jf (]A\f\riw - \r?:( /:_(] = (“Z'Q(’B“f)*ﬁ L e a? e G-

Example 1. A = {_22 ] Find the eigenvalues and eigenvectors!

Y e R e
N (R R PETH A v A
e B A B A B PR A )

U ﬂ A S R B SR N



Example 2. x' — Ax. Given A — [81 ﬂ and \ = +3.
kel [ 481 11 6

el(d A1) - w A*ﬁfﬁ Lo = 2005 we (1]
Lo S0

Theorem. If r1,...,r, are distinct eigenvalues for A, «, and u; is the eigenvector corresponding to

r;, then u;, ..., u, are linearly independent! DQ?@«* et eiqon vadues rtdcﬂ ffm. “/‘”IOP' BZ:J%UWS_
: {

e
=2. at - -
Pyl'oc%f. S\as U e e;‘c?rew“"b"» Vo, W Wes v, 0 Sps BWeL  u=cdy J&""« - CAus

—_—
L nwechh . = VU= QU = (rl”r?,)ufto = =% é

Corollary. If rq,...,r, are distinct eigenvalues for A, «, and u; is the eigenvector corresponding to
r;, then e™tu,, ..., e tu, are linearly independent solutions to x’ = Ax !

-2
2 =5

x = Cl?i %Clil: Sriu mﬁj' XE

That’s great, but how do we handle complex roots as a solution to our characteristic polynomial?

Example 3. x' = [ } x has a general solution through superposition.

Example 4. x' = Ax. Given A = [:} _23}

‘S‘(Mf"l 'f,/
/ W\/
o [Hli%]
e, (N (-N(-3N-2 = x= —2%< =) U~ /

do the aghis]

.y & - Df
e B R e A RE B R X s R R e
N 7

Xy X,
CW/\ 30 HM ZW) Cot € a fun conb oF Hhew
b et € o TR



)

Example 5. x’ = Ax. Given A = [2 ol

Complex Eigenvalues. If x(t) = eu=¢e
then (;&IE”]}L\ C(j’\/\- We Ol LJ/ (A', ;5 (/\J/ 19
x1(t) = e

xa(t) =

are linearly independent solutions.

7 (atif)e (a+ib) is a solution for x’ = Ax with A € Mayo,

cos Bta — e®t sin ftb and

e sin fta + e cos Btb

That’s even greater, but how do we handle repeated roots as a solution to our characteristic polynomial?

Example 6. x' = Ax. Given A = [le ::ﬂ

CAlNY = (-0 (20 ~f 5 =Ll vep,

-& >
Gunss &, = te " @,

a,{g JL%J_
) g by | -6\
wi) > RS [aj

—& -6 a-
}([l‘: (,l_ E) 6fb(/l' - &_{;M,L = € (“l*”:.\ +ﬂ_67f’__ Wy —_ t?[/(a/é

Mi L4 5)0 - be

(e Mw
U, ) CjEMU“{
G ol

poafere[h D)
e
= B[y
T Y o [
(A5 - o)
12 L) o w1
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3.5 Two dimensional systems and their vector fields

As we saw before, we can make slope fields if we have autonomous ODEs. Suppose our first order system is
autonomous:

dxr

- f(z,y)
dy B

a g(z,y)

for some functions f and g. Again, note that both x and y are functions of the same independent variable,
t. If we look at just the (x,y) plane, we have

This is important:

Phase planes have two major uses:

1.
2.
r = —x
Example 1. y = —2y
TN 7 40 TN\ /1777,
N\ 7 NN\ttt
NN 2 7 NS 7
NN\ RN\
S22 N\l
Sz Wi
of — oM e of NN e
— - B i et e # TN e
— A 77NN
7NN 77 7NN\
! ////‘j)’///ﬁ .; ; ;rlrl i :}lg \\:\\\\.\\\\\'\\\\\ 1 T ’if//z////x ."fg"’llilftlll'l l i l Il ll"\',\\\\\‘\b\‘\\\q\\
;/}; ?’/K ,'f .";.f "f .'rl |1: Ii lI |1| II‘I lll"' *\‘.\\\\\ Si:\\k /////:/// /f;.rfl,rj I‘il |l|l \ll l { l‘ Iﬁ ‘II'. EI\.\\ \‘\\‘ \\\‘\\:\\\
-2t /// /.lf/‘.'f'l'lr‘l‘l+ ]’H*I‘\\!‘\ \\\ d 2 f/fﬂ'{r/ JI*u'lgl‘!11\1|4j:.k‘ \".\\\\ \\\\ 4

[
8

Example 2. z,



G,

X
Example 3.
P Y (z—2)(y —2)

Equilibia. A point (xg,y0) where 2’ = ¢’ = 0 is called a critical point or equilibrium point. The
solution z(t) = xo, y(t) = yo is called an equilibrium solution. The set of all critical points is the
critical set.

Example 4. Find all critical points in the previous examples.

/

2
Example 5. z, = 2wy

= 3zy—y°

Let’s assume our autonomous system is also linear and homogeneous, so we have
9 —diva sk preder, ey Womom, comsd. coeiE
!/

BT WAy e AL wlMdeo

Y cx

Solutions to x’ = Ax are

so they appear as curves in the phase plane. Equilibria solutions are constant solutions (where all derivatives
are 0), so a solution is an equilibrium if and only if

Since ker A always contains 0,

When are there other, nontrivial equilibrium solutions? y

The det A = 0 situation is more complicated (take MA337!), so we’ll assume det A # 0. That is, we’re
looking at systems of the form x’ = Ax, where det A # 0. Thus,

Commence cases! (P\g,@mhol goot > et (puww[ n fj'{m (_Ou.rso)
Case 1: Two distinct real eigenvalues X, >)\3_ [ w it V&UL’"‘-‘ Vi, Vo

-\

The eigenvectors produce solutions called eigensolutions:
- b s
- % E > _
Xl - & U‘ x - B Vz

<
s
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Y8 Le — X @M by
y(é) v iib Q — 22
(L - 1 X
We have%ﬁ/ 1 U= W 2
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What about other solutions? Note that x(t) = cie*1t# + coe?2tv, so

bt T c:@(»v*:xc'{“‘m
1O G roetty o S
X8 = . xT =
Ce™ N T Ge v 2
' N e 5

/\,))\1 S0 Fooe e C(M‘P’&ﬁb

Since Ay — A1, we can :
) /
lim YO _ Vo v L%//
U\l

top K& .
If Ay < A1 <0, then z(¢t) and y(¢) both decay exponentially, so

Thus,

Stable and Unstable Nodes. If the eigenvalues of A € Myys are real, distinct, and negative

(positive), then the phase plane of x’ = Ax is called a stable (unstable) node and the origin is an
attractor (repeller).

S{-g.\o\.f_.' )\7_4)\' {0

Fun fact: X0 e £t 00
Xp—o e t=
Example 6. A = [ :i :; } \T:ﬁi]\j}f[‘% P U\IIZ‘D\L\ 5o\ hay « ""Di‘”‘ma-w“ Pkll/puﬁ\

Example 7. A= [ 2+l }

+1 +2




Case 1b: Two distinct real eigenvalues an

Stable and Unstable manifolds. If the eigenvalues of A € Myyxo are Ay < 0 < Az, then the
eigensolution associated to A\; < 0 is called the stable manifold. The eigensolution associated to
Ao > 0 is called the unstable manifold. The associated phase plane is called a saddle node.

1 1
Example 8. A = [ 1 _1]
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Centers and Spirals. If the eigenvalues of A € My are A = a+i with 8 # 0, then the associated

phase plane is called a stable spiral when o < 0, a center when o = 0, and an unstable spiral when
a > 0.

If o # 0, then x(¢) is

Note: orientation of a spiral (clockwise or counterclockwise) or direction on ellipses is not clear from eigen-
stuff. You must test a point!

0 —4.34 . .
Example 10. A = [ 0208 —0.078 ] has A = —0.039 4+ 0.949: as an eigenvalue. Thus,

A <0 =5kl

1 1
NotethatA{O}—{_2],so

-2

| AT - [
' /Ay

|
Example 11. A = { 1 E)i ] = * Y4 bors !

Let’s put this all into a convenient chart!
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3.6 Two Dimensional-Systems-Applications- Donus Springs

Example 1. Here is a example model. How can we turn this into a system of equations and solve it?

Math 334 — Differential Equations

Section 3.6

First, let’s pretend one of these carts isn’t really there.
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Section 3.9.2

3.9.2 Var of Parm for Nonhomogeneous Systems

There are a lot of really cool things in Section 3.9. Alas, this is all we have time to cover.

Consider the nohomogeneous, nonautonomous linear system
x = Ax +f,
where A € My, (CH(R)).! As one might expect, the general solution is of the form

75: fc 4 )(? iiﬂ Solw f '/Lewo:] et QoA P(M‘_(_
X

_0:{ fp %’Dfu\ (Bﬂ,ly M/> f{\: wm”[ﬂo"‘w‘; ,0‘3*‘}

n

wo= X (8¢

As you surely expect, we’ll use var of parm to get x,. We’ll guess

/RE_CW((; Xl':'?/ 5[}@55 XP: L(QXIU—)

1,0 X0 e®
e

b plug o b R0 Ao + T (o)
LHS BHS
LS 7‘? - L (O ele) + FLAD
quss T = AL FE)
C-[% % - K)o X= LA AL AG) = AX
N

\\\i"\""w‘h’m\ : + = Aﬁ
e (& c I{L =/ +§

ey X (9 (€)
Y= X (O5K)

Thus, ’fiXEJr/X: &K*{\C A%
clO= Y ONO M

IThese are just n X n matrices whose entries are continuously differentiable functions of the independent variable (probably
t)

2WHY?



Qur & s &y (dake conge)
ot Do RA Tucdy

Var of Parm for Systems. If A(¢) and f(¢) are continuous in some interval I, then

x(t) = X(H)c + X (£) / X-L()E() dt,

is the general solution to x’ = Ax + f.

Example 1. Solve " 4+ = = cos 2t system-style.
Ch 9t ooy e o v Vel

New: ek ys S ‘(’f: = o mft ~ ifﬂztx\(* wslt’} ) Ij lo\SE;} ‘ [C"c:?—e‘«)
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> vk =0 =) W e-ve
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)(1: Cos £ € 55t J tos £ — iswt

(T*l":lfa =0+1

Qeaeib <[V 1% e sab (¢
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“' tost (os2¢ dt Sk

e ~
S*wﬂsmb&‘g & (ot 2+ = 2ees?t —I
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Z (ot ~cest
B gt — 3L
=L
3@52{

K=Kt Xy

(os L s t [ ‘13 Cos 2t
- €
~smk @ t]]e, Y 2t
Here’s s fundamental fact® you may have forgotten: If f is continuous on [a, b] and

F(t) = / t £(s)ds, s el (D) &X“‘? &t

%sm L

then F'(t) = f(t) on [a,b]. In particular, when we're defining c(t) on [a, b], we should* really be writing

C = y }\(*? ds  Ses o) o [o )

3Theorem.
4If Newton saw what we did before, he’d probably make the ghost of Leibniz haunt us.
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Let’s look at the nonhomogeneous IVP

x' = Ax +f, x(to) = Xo.

We know the general solution is

.
%- Xe « K|OFd

©

Note that we’ve chosen to start our integral at zy. The Fundamental Theorem of Calculus let’s us choose,
and this is a good choice. Look what happens when we apply the initial condition: so(ve o T -

= 0w \Joriehelt  bpun

o= Nl X(ﬁ)ﬂ N5l ds

Thus, we have

i [e- X\

Example 2. Sohe !, — o0 * % . W) K,,(o\:wﬂ
L)
R S g B
e k|NFe

S G O SR AR LY

M1
!
\
-—
<
~
_ N
<~
\
N

a



Math 334 — Differential Equations

Notes on Notes on Diffy Qs, Differential Equations for Engineers, Jiti Lebl

Section 6.1

Integrable Functions 1 Functions
fPR—=R = g:R—>R

An operator is just a linear transformation on a vector space of functions (like P, or C*([a, b])). Oh. In case
you forgot, C''([a, b]) is the set of functions defined on the interval [a, b] that have continuous first derivative.
It’s totally a vector space. You should check. Here’s an integral operator:

I: C*([a,b]) — C*([a,]) by

1) = [ flaydo
You should verify that I is a linear transformation. When your done, you should be sad that you can’t make
a nice matrix representation for I because C([a,b]) is infinite dimensional. Sorry. That is very sad.

Hey! Define I: P, — Py, 41 by I(f) = [ p(x) dx. There. Now you can make a matrix representation for I.

6.1 Laplace Transform

iy = |7

This is a function of s. People usually use capital letters for Laplace transformed functions:

F(s) = L{f (D)}

Why is this relevant to Differential Equations?

Let’s do an example!



Example 1. £{1}

oL

E e’ -l
i%@’jo e 0951 s|, s
Another one.
Example 2. £ {t}
-st
& o -5t TL{: <
LigE " de 0 w
5€
+ b
0 %Les
Another one.
Example 3. £ {e3}
W

ST B RS U

Common Laplace Transforms!

0

{Sl—.’a)i
¢

\

= ﬁ
1

n!

1
at\ __
et =2
. k
E{Sln(kt)} = m
S
L{COS(kt)} = m



o o lmsr poecedont
Laplace transform Fun Facts! T Laf)lqc( Yrans b s o '

L{af(t)+ Bg()} = aL{f(O)} + BL{g(1)}
Example 4. £ {3t — 5sin(2t)}

N SIS R SEERRS

Inverse Laplace Transform

LHF(s)}
What are some cool things about the Inverse Laplace Transform?

4 6 1
-1
Example 5. L {S+(95_8+8}

2
2 1
Example 6. £7! {( - 3) }
s s

1
Example 7. £7! 0s
s2+16

1
Example 8. £~} st
s2 —4s



First Translation Theorem Let a be any real number. Let F(s) denote £ {f(¢)}. Then,

L{e”f(t)} = F(s—a)

Reason:

Example 9. £ {13}

Example 10. £ {e™ % cos(4t)}

Example 11. L7 {F(s —a)}

1
E le12. 718 — ——
xample L {32+25+5}
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Derivatives of Transforms:
n=123,..
n n dn
LAmf(0)} = ()" F(s)

.t lfl
Example 1. L {t2 sin(kt)} e (s

C/(/.(TZ j\—; ﬁs-‘nkki ) [ /Lwl { L0l kD) (25)]

Lls™—2%
—
(s*tK9)

183

How does the Laplace Transform of Derivatives work? u

SEEE I N T N W T O R
0 ’z:-li i b v

E3elreds = - = STE R - Tl

L9 s - Mm@ - 17
But what about the Laplace Transform of a second derivative?

Se e

Okay that’s pretty neat. I think I see a pattern; can we generalize this?
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Example 2. Find £ {y” — 4y’ + #$y} given y(0) = 1 and y'(0) = —1. )/ 4
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Unit Step Function:
<
u(t_a):{o, 0<t<a
1, t>a
How does the Unit Step function interact with another function?
! -
CtAOW"CLC oY m Y_q( 90)
w i
o

Second Translation Theorem:

e LIr )

=

LA{f(t—a)U(t—a)} =e “F(s)

Example 3. £ {sin(¢)U(t — 2m)}
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Section 6.3
—1 t T
Example 1. £7* f\ ? (Jﬂ} - {;l%s;nﬂr) :j T Slﬂ(é“T’)ol’b
)
ﬂ“;?'l—
—‘/6 At Locos t

The Convolution operation (x) is defined for two functions f, g that are piecewise continuous on [0, c0)

as
(190 = [ 119t -7)a

Example 2. Given f(t) = ¢’ and g(t) = sin(¢). Find f x g.

(? ® ‘37(%\ < jt e’ sult-2)d

'J£ etsm (1’:' ’E)J’t

sl 1)) :

S (D) - %[ st et)

Fun Facts!

o (cf)xg=fx*(cg)=c(f*g)
o (fxg)xh=fx(gxh)
o frxg=gxf



Funnest Fact?s!
LA{(fxg)t)} = LLfO)}IL{g9()} = F(s)G(s).

which implies

LTHF(S)G(S)} = f*g.

Example 3. Find (in terms of ¢) £~} {m} using Convolution.

S NP R,

—dE 4y

Example 4. Let’s figure out E{fot cos(t)dr} & X g&”% 7’”; = i {{} ﬁ {LOB éJ

5%+

- 2 S oY
T ot {i“’/ - 3\(—_)* s%t|

g(+">

This answer looks pretty familiar right?




Note the power of making g(t) = 1! In general, we will get

c {/Otf(r)dT} - @

Example 5. Computer Visualization Time! What is the convolution really? Before we answer that.
Let’s think about what Integrals are. They help us find the area under a curve. Okay so we are looking at
the area of something. So what is going on in the integrand? Our f stays the same and then we multiply
by a g that is being shifted by t.

As we look at the The Boxes, we are performing f * g. Our f is the blue box in the center that is staying
in place. The moving red graph is the g. As ¢t moves the area shared between the two graphs changes. The
black line tracks the value of the integral at each of these locations. All of these values in aggreagate form
the convolution f x g

T T i T T T T T T I

TR — 1 T —1 ] Area under frogit-<) ]

] T S ...... T R P i) 4
: o : . ait-<)

g_z_,i .......... ...... T IEEarrorey O I e L -

il ! I : ! i I ! I

-2 15 1 0.5 1] 0.5 1 15 2

T &t

T T T i T T T L I I
Thooooon e - : — Frea under f0ai-o) 1
-] SO U B - S N fz) H

: : . : : ait-

i i 1 1
1] 0.4 1 14 z
&1
T T T T T T T T T
Tt REREERRETS R — ] #rea under froni- o) |
[ SO . L e fz) U
. : : . -1,
1] S P e ] ait-z)

: : : : (f+gxt)
04_. .......... T 3 N T .......... eiiiieeean =
g_z_‘f .......... [ HERSY ATy .......... s FERRURRRRES. ;]

ol ] L | ] ! I

2 14 1 0.5 1] 0.4 1 14 2

&t
T T T T T T - I T T
L SERREEERREES R TR : - I:Ip“-'a under g1
-] SO s T N i) 4
DEbL [ e A at-z)
: : . : : (=gt
I i
14 z

t| frea unlder fioalt- r_; I
flz) u

Figure 1: The Boxes



As we look at image 2, we see going down the left column then the right step by step what the convolution
looks like graphically. We have two functions x(t) and h(t). However, we need to compose one of these with
—t to get h(—t) We see the two graphs overlaid with different ¢;’s. All of the these ¢;’s help us form the
function generated by x x h

 X(1) i X(T)
h(tg —T) /
"t { T
‘h(t) f | X(’;I;)
t -
h(-1) L x@) '
hit4-1
T — 1
4 x(1) $ x(D)*h(t)
h(tl -T) | !
b T t 1;2 1I33 1I%:t T

Figure 2: image 2



As we look at image 3, we are seeing f*g and g f vertically sliced. It highlights the value of the convolution
stays the same regardless of the order.

Convolution
f

Figure 3: image 3

Example 6. Let’s do some Mathematica examples
LaplaceTransform Documentation| UnitStep Documentation |Convolve Documentation

LaplaceTransform[t~4 Sin[t], t, s];
LaplaceTransform[E~(-t), t, sl;

Plot [UnitStep[t] , {t,-10,10}1;

Convolve[Cos[t]UnitStep[t],t"3UnitStep[t],t,y];
Convolve[Sin[t]UnitStep[t],t"2UnitStep[t],t,y];


https://reference.wolfram.com/language/ref/LaplaceTransform.html
https://reference.wolfram.com/language/ref/UnitStep.html
https://reference.wolfram.com/language/ref/Convolve.html
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