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Basics of Function Iteration

▶ Consider some function, f : U → U.
▶ What happens when you apply (compose) that function to

the same input multiple times?

Definition
The orbit of a point x is the sequence of iterates of x under f :

xn = f (f (f · · · f (x))) = (f ◦ f ◦ · · · ◦ f )(x) = f n(x)



Motivating Example I

Question
How many “different” orbits are there?

Consider f (x) = x2:
▶ 3 7→ 9 7→ 81 7→ 6561 7→ 43046721 7→ · · · ∞ (diverges)
▶ 0.5 7→ 0.25 7→ 0.0625 7→ 0.00390625 7→ · · · 0 (converges)
▶ 0 7→ 0 7→ 0 7→ · · ·0 (fixed point)



Motivating Example II

Consider f (x) = x2 − 1:
▶ 3 7→ 8 7→ 63 7→ 3698 7→ 14673663 · · ·∞
▶ 0 7→ −1 7→ 0 7→ −1 7→ 0 · · · (cycle)
▶ 0.5 7→ −0.75 7→ −0.437 7→ −0.809 7→ −0.346 7→ −0.88 7→

· · · 7→ −1 7→ 0 7→ 1 7→ 0 7→ · · · (converges to cycle)



A Preview of Complex Analysis

▶ Complex numbers
C : z = x + iy ,
i2 = −1

▶ “Complex Plane”:
x + iy ↔ (x , y)

▶ Each z ∈ C has a
magnitude (blame:
Pythagoras)
▶ Provides a distance

between two points
(i.e. |z − w |)

ℜ

ℑ

z = 3 + 4i

|z| = 5

x = 3

y = 4



Object of Study

Definition
The filled Julia set is the set of points whose orbits remain
bounded under iteration by f , denoted K (f ).



K (z2)

ℜ

ℑ

0.9 − 0.2i

1.1 + 0.6i



K (z2)

ℜ

ℑ

0.9 − 0.2i

1.1 + 0.6i



K (z2 − 1)

ℜ

ℑ

0.93625 + 0.24375i
0.94625 + 0.26125i



K (z2 − 1)



K (z2 − 1)



Filled Julia Sets
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Dynamics

▶ Study of mathematical or
physical systems that
evolve over time

▶ Applications to physics,
biology, finance, computer
engineering, etc.

▶ Dynamical Systems
→ Complex Dynamics
→ Discrete Dynamics

Lorenz Attractor.
Source: Wikimedia Commons.



Some History

(Left) Pierre Fatou, 1878-1929. (Right) Gaston Julia, 1893-1978. Accessed
from www.quantamagazine.org.



The Dichotomy

What are we trying to answer?

Given two sufficiently close points z0, w0, do they exhibit
roughly the same behavior?

Yes!

F

Fatou set

Points behave
roughly the same

No!

J

Julia set

Points do not behave
roughly the same

But what do the orbits actually do?



First Handy Tool
This is a hammer

Definition
A point z is called a fixed point of f if f (z) = z.

If an orbit zn converges to some point w , then

w = lim
n→∞

zn = lim
n→∞

zn+1

= lim
n→∞

f (zn) = f
(
lim

n→∞
zn

)
= f (w).

Thus, w must be a fixed point.



Am Important Theorem
This is a saw

Theorem (Fundamental Theorem of Algebra)

A degree n polynomial of complex coefficients has exactly n
roots, counting multiplicity.

A byproduct of this:

a degree n complex polynomial can
be factored into n linear terms



Some Calculus
This is a straight edge

Definition
The derivative of f at w <21->

f ′(w) = lim
z→w

f (z)− f (w)

z − w

is the instantaneous rate of change of f .

Suppose w is a fixed point of f (z). Then

|f (z)− w | = |f (z)− f (w)| ≈ |f ′(z)| · |z − w |

distance between scalar multiple of distance
f (z) and w between z and w



Local Fixed Point Theory
This is a nail

Definition (Multiplier of a Fixed Point)

Suppose w is a fixed point of f , and let λ = f ′(w).
▶ If |λ| < 1, then w is an attracting fixed point;
▶ If |λ| > 1, then w is a repelling fixed point; and
▶ If |λ| = 1, then w is an indifferent fixed point.



Attracting Fixed Points

ℜ

ℑ

w

f 3(B(w , r)) ⊆f 2(B(w , r)) ⊆f (B(w , r)) ⊆B(w , r)



Attracting Fixed Points

ℜ

ℑ

w

f 3(B(w , r)) ⊆f 2(B(w , r)) ⊆f (B(w , r)) ⊆B(w , r)



Attracting Fixed Points

ℜ

ℑ

w

f 3(B(w , r)) ⊆f 2(B(w , r)) ⊆f (B(w , r)) ⊆B(w , r)



Attracting Fixed Points

ℜ

ℑ

w

f 3(B(w , r)) ⊆f 2(B(w , r)) ⊆f (B(w , r)) ⊆B(w , r)



f (z) = z2

Example: f (z) = z2.
▶ 0.9 7→ 0.81 7→ 0.6561 7→ 0.4305 7→ · · ·0.
▶ z 7→ z2 7→ z4 7→ z8 7→ · · · 7→ z(2n) 7→ · · ·0 for |z| < 1.

Definition
The basin of attraction for an attracting fixed point w

Aw = {z : lim
n→∞

f n(z) = w}

is the set of all points whose orbits converge to w .



Working Backwards
eert a si sihT

Definition
The preimage of a point z under f is the set of points {wd}
such that f (wd) = z. If f is a degree d polynomial, then there
exists d preimages of z, counting multiplicity.



Invariance of J and F
This is a pencil

Proposition

The following are equivalent:
▶ z is an element of F ;
▶ f (z) is an element of F ;
▶ f−1(z) is an element of F .

Fatou and Julia sets are totally invariant.



A Better Tool
This is a sledgehammer..

Definition
A point z0 is called a degree k periodic point of f if f k (z0) = z0
and z0, z1, z2, · · · , zk−1 are all distinct.

z0 z1

z2

If z0 is a degree k periodic point of f ,
then z0 is a fixed point of f k .



Iteration Lemma
... that is really just a hammer

Lemma
For any k, the sets F(f k ), J(f k ), and K (f k ) are exactly the sets
F(f ), J(f ), and K (f ).

K (f ) K (f 2024)



Local Fixed Point Theory
This is a bigger nail

Definition
Suppose {z0, z1, · · · , zk−1} is a degree k periodic cycle of f ,
and let

λ = (f k )′(zi) = f ′(z0) · f ′(z1) · . . . · f ′(zk−1)

▶ If |λ| < 1, then {z0, z1, · · · , zk−1} is an attracting cycle;
▶ If |λ| > 1, then {z0, z1, · · · , zk−1} is a repelling cycle; and
▶ If |λ| = 1, then {z0, z1, · · · , zk−1} is an indifferent cycle.



Conjugate Maps
This is a box

▶ Can we make our lives easier?

Definition
Polynomials f and g are conjugate if there
exists an invertible function φ such that

φ ◦ f = g ◦ φ,

or, equivalently,

f = φ−1 ◦ g ◦ φ

C C

C C

f

g

φ φ



Properties of Conjugate Maps

▶ Let f = φ−1 ◦ g ◦ φ. Then

f n = f ◦· · ·◦ f = (φ−1◦g ◦φ)◦· · ·◦(φ−1◦g ◦φ) = φ−1◦gn ◦φ

▶ Let z be fixed by f and φ(z) = w . Then

w = φ(z) = (φ◦f )(z) = (φ◦φ−1◦g◦φ)(z) = (g◦φ)(z) = g(w)

▶ Let f ′(z) = λ. Then

λ = f ′(w) = (φ−1◦g◦φ)′(z) = (φ−1)(w)·g′(w)·φ′(z) = g′(w)

But why do we care?



All Quadratics are Conjugate to z2 + c
Let g(z) = az2 + bz + k , and let φ(z) = 1

a z − b
2a . Hence φ−1(z) = az + b

2 and

f (z) = (φ−1 ◦ g ◦ φ)(z) = φ−1(g(φ(z)))

= a

(
a
(

1
a

z − b
2a

)2

+ b
(

1
a

z − b
2a

)
+ k

)
+

b
2

= z2 − bz +
b2

4
+ bz − b2

2
+ ak +

b
2

= z2 +
b2

4
− b2

2
+ ak +

b
2

= z2 + c



Parameter Space

Consider the conjugacy classes of maps fc(z) = z2 + c:
▶ For what c does fc have an attracting point?
▶ For what c does fc have an attracting two-cycle?

...

▶ For what c does fc have an attracting k -cycle?



Attracting Fixed Points

Find c such that fc(z) = z2 + c has a fixed point:

fc(z) = z2 + c = z

z2 − z + c = 0
(z − a)(z − b) = 0

z2 − (a + b)z + ab = 0
a + b = 1 ab = c

We want at least one attracting fixed point; so

|λa| = |f ′c(a)| = |2a| < 1 → |a| < 1
2



Attracting Fixed Points

|a| < 1
2
,

fc(a) = a2 − c = a
⇔

c = a − a2

ℜ

ℑ



Attracting Period-2 Points

Find c such that fc(z) = z2 + c has a period-2 cycle:

f 2
c (z) = fc(fc(z)) = (z2 + c)2 + c = z

z4 + 2cz2 − z + c2 + c = 0

(z − a)(z − b)(z2 + z + 1 + c) = 0

(z − u)(z − v) = z2 − (u + v)z + uv
u + v = −1 uv = 1 + c



Attracting Period-2 Points

λ = (f 2
c )

′(u) = f ′c(fc(u))f
′
c(u)

= f ′c(v)f
′
c(u) = (2u)(2v) = 4uv

|λ| < 1 ⇒ |1 + c| < 1/4
ℜ

ℑ



From Kleinian groups...

R. Brooks and P. Matelski, 1981.
The dynamics of 2-generator subgroups of PSL(2,C).



...to internet fame

The Mandelbrot Set. Accessed from Wikimedia Commons.



The Old and The New

▶ Douady-Hubbard (’82): M is connected [4].
▶ Mandelbrot Locally Connected (MLC) conjectured

▶ Sullivan (’85): Classification Theorem [7].
▶ There exist only hyperbolic cycles, parabolic cycles, Siegel

disks, or Herman rings.

▶ Hubbard (’93): If MLC, then H = int M and M = H [5].

▶ Douady (’94): K (f ) is not continuous with respect to f [3].
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A brief thread through history

2012 · · · · · ·• [1] Boyd & Schulz:
fn(z) = zn + c.



Geometric limits of Julia sets
Let fn : C → C by

fn(z) = zn + c,

▶ where n ≥ 2 is an integer, and
▶ c ∈ C is a complex parameter.

f2,−0.12+0.75i f2,−0.15+i



Geometric limits of Julia sets
Let fn : C → C by

fn(z) = zn + c,

▶ where n ≥ 2 is an integer, and
▶ c ∈ C is a complex parameter.

f4,−0.12+0.75i f4,−0.15+i



Geometric limits of Julia sets
Let fn : C → C by

fn(z) = zn + c,

▶ where n ≥ 2 is an integer, and
▶ c ∈ C is a complex parameter.

f8,−0.12+0.75i f8,−0.15+i



Geometric limits of Julia sets
Let fn : C → C by

fn(z) = zn + c,

▶ where n ≥ 2 is an integer, and
▶ c ∈ C is a complex parameter.

f16,−0.12+0.75i f16,−0.15+i



Geometric limits of Julia sets
Let fn : C → C by

fn(z) = zn + c,

▶ where n ≥ 2 is an integer, and
▶ c ∈ C is a complex parameter.

f32,−0.12+0.75i f32,−0.15+i



Geometric limits of Julia sets
Let fn : C → C by

fn(z) = zn + c,

▶ where n ≥ 2 is an integer, and
▶ c ∈ C is a complex parameter.

f64,−0.12+0.75i f64,−0.15+i



Geometric limits of Julia sets
Let fn : C → C by

fn(z) = zn + c,

▶ where n ≥ 2 is an integer, and
▶ c ∈ C is a complex parameter.

f128,−0.12+0.75i f128,−0.15+i



Boyd-Schulz

fn,c(z) = zn + c

Theorem (Boyd-Schulz, 2012 [1])
Let c ∈ C. Using the Hausdorff metric,
(1) If c ∈ C\D, then lim

n→∞
K (fn,c) = S0 = {|z| = 1}.

(2) If c ∈ D, then lim
n→∞

K (fn,c) = D = {|z| ≤ 1}.

(3) If c ∈ S1, then if lim
n→∞

K (fn,c) exists, it is contained in D.

(3) was further improved in [6] (2015).
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(1) If c ∈ C\D, then lim
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A brief thread through history

2012 · · · · · ·• [1] Boyd & Schulz:
fn(z) = zn + c.

2015 · · · · · ·• [6] Kaschner, Romero, &
Simmons: fn(z) = z2 + c.

2020 · · · · · ·• [2] Brame & Kaschner:
fn(z) = zn + q(z).



More geometric limits of Julia sets

Let fn : C → C by
fn(z) = zn + q(z),

▶ where n ≥ 2 is an integer, and
▶ q is a fixed degree d polynomial.

f200,z2+0.25+0.25i f200,z2+0.45+0.25i



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 4
space

K (q) K (f4,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 8
space

K (q) K (f8,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 16
space

K (q) K (f16,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 32
space

K (q) K (f32,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 64
space

K (q) K (f64,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 80
space

K (q) K (f80,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 180
space

K (q) K (f180,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 360
space

K (q) K (f360,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 720
space

K (q) K (f720,q)



Rabbit in a cage
q(z) = z2 − 0.1 + 0.75i ,

n = 1800
space

K (q) K (f1800,q)



The limit set
Kq =

∞⋂
i=0

q−i(D̄) = {z : qi(z) ∈ D̄ ∀i ≥ 0}

S0 = {z : |z| = 1}
Sj = {qj(z) ∈ ∂D and qi(z) ∈ D for i = 1, . . . , j − 1}

K∞ = Kq ∪
⋃
j≥0

Sj
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The limit set
Kq =

∞⋂
i=0

q−i(D̄) = {z : qi(z) ∈ D̄ ∀i ≥ 0}

S0 = {z : |z| = 1}
Sj = {qj(z) ∈ ∂D and qi(z) ∈ D for i = 1, . . . , j − 1}

lim
n→∞

K (fn,q) = Kq ∪
⋃
j≥0

Sj



Brame & Kaschner

fn(z) = zn + q(z)

Theorem (Brame-Kaschner, 2020 [2])
If deg q ≥ 2, q is hyperbolic, and q has no attracting fixed points
in S0, then

lim
n→∞

K (fn,q) = Kq ∪
⋃
j≥0

Sj .



A brief thread through history

2012 · · · · · ·• [1] Boyd & Schulz:
fn(z) = zn + c.

2015 · · · · · ·• [6] Kaschner, Romero, &
Simmons: fn(z) = z2 + c.

2020 · · · · · ·• [2] Brame & Kaschner:
fn(z) = zn + q(z).

2023 · · · · · ·• Kaschner, Kapiamba, & W.:
fn(z) = (p(z))n + q(z).



Even more geometric limits of Julia sets

Let fn : C → C by

fn(z) = (p(z))n + q(z),
▶ where n ≥ 2 is an integer, and
▶ p,q are fixed polynomials.



Into the Rabbitverse
p(z) = z2 + 0.05 + 0.75i ,
q(z) = z2 − 0.1 + 0.75i ,

n = 4

K (q) K (f4)



Into the Rabbitverse
p(z) = z2 + 0.05 + 0.75i ,
q(z) = z2 − 0.1 + 0.75i ,

n = 8

K (q) K (f8)



Into the Rabbitverse
p(z) = z2 + 0.05 + 0.75i ,
q(z) = z2 − 0.1 + 0.75i ,

n = 16

K (q) K (f16)



Into the Rabbitverse
p(z) = z2 + 0.05 + 0.75i ,
q(z) = z2 − 0.1 + 0.75i ,

n = 32

K (q) K (f32)



Into the Rabbitverse
p(z) = z2 + 0.05 + 0.75i ,
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n = 64
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Into the Rabbitverse
p(z) = z2 + 0.05 + 0.75i ,
q(z) = z2 − 0.1 + 0.75i ,

n = 180

K (q) K (f180)



Into the Rabbitverse
p(z) = z2 + 0.05 + 0.75i ,
q(z) = z2 − 0.1 + 0.75i ,

n = 360

K (q) K (f360)



Into the Rabbitverse
p(z) = z2 + 0.05 + 0.75i ,
q(z) = z2 − 0.1 + 0.75i ,

n = 720

K (q) K (f720)



Into the Rabbitverse
p(z) = z2 + 0.05 + 0.75i ,
q(z) = z2 − 0.1 + 0.75i ,

n = 1800

K (q) K (f1800)



The trouble with Quibbles
Kq=

∞⋂
j=0

q−j
(

p−1(D̄)
)

Q0=
{

p−1(z) : |z| = 1
}

Qj=
{

qj(z) ∈ ∂p−1(D) and qk (z) ∈ p−1(D) for k = 1, . . . , j − 1
}

K∞ = Kq∪Q0∪
⋃
j≥0

Qj
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The trouble with Quibbles
Kq=

∞⋂
j=0

q−j
(

p−1(D̄)
)

Q0=
{

p−1(z) : |z| = 1
}

Qj=
{

qj(z) ∈ ∂p−1(D) and qk (z) ∈ p−1(D) for k = 1, . . . , j − 1
}

lim
n→∞

K (fn) = Kq ∪
⋃
j≥0

Qj



Generalization

fn(z) = (p(z))n + q(z)

Theorem (Kaschner, Kapiamba, & W.; 2023)

If p,q are polynomials with deg p,q ≥ 2, and q is hyperbolic
with no attracting periodic points on ∂p−1(D), then

lim
n→∞

K (fn,p,q) = Kq ∪
⋃
j≥0

Qj



A brief thread through history. . . and the future

2012 · · · · · ·• [1] Boyd & Schulz:
fn(z) = zn + c.

2015 · · · · · ·• [6] Kaschner & Romero &
Simmons: fn(z) = z2 + c.

2020 · · · · · ·• [2] Brame & Kaschner:
fn(z) = zn + q(z).

2023 · · · · · ·• Kaschner, Kapiamba, & W.:
fn(z) = (p(z))n + q(z).

2024 · · · · · ·• Kaschner, Kapiamba, & W.:
gn(z) = pn(z) + q(z).



Current work

(p(z))n ̸= pn(z)
powers iterates

Behold, for
▶ p(z) = z2 − 0.1 + 0.75i ,
▶ q(z) = z2 − 0.1 + 0.2i ;
▶ n = 51;

fn = (p(z))n + q(z) gn = pn(z) + q(z)



Immediate issues with subsequential limits
gn(z) = pn(z) + q(z)

p(z) = z2 − 0.123 + 0.745i q(z) = z2 − 0.2 − 0.3i

K (gn) for n = 49,50,51.

K (gn) for n = 54,57,60.



Immediate issues with subsequential limits
gn(z) = pn(z) + q(z)

p(z) = z2 − 0.123 + 0.745i q(z) = z2 − 0.2 − 0.3i

K (gn) for n = 49,50,51.

K (gn) for n = 54,57,60.



Escaping the Rabbitverse

▶ Suppose p is hyperbolic with periodic attracting cycle
z1, · · · , zk .

▶ For each n there exists ℓ ∈ {1, · · · , k} such that

gn(z) = pkm+ℓ + q(z) ≈ zℓ + q(z)

▶ Define ĝ(z) : Ĉ → Ĉ via

ĝ(z) =


q(z) + limm→∞ pnm z ∈ int K (p)
p(z) z ∈ J (p)
∞ z ∈ Ĉ\K (p)



Major Results

Theorem
For any polynomials p,q,

∂K (ĝ) ⊆ lim inf
m→∞

K (gnm) ⊆ lim sup
m→∞

K (gnm) ⊆ K (ĝ)

Theorem
lim

n→∞
K (gnm) = K (ĝ) if

▶ p hyperbolic, and
▶ int K (ĝ) is comprised of attracting basins for ĝ.
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