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Abstract. For the family of maps fn(z) = (p(z))n + q(z) for polynomials p and q we show that
the geometric limit of Julia sets as n → ∞ exists and explicitly describe this set. For the family of
maps gn(z) = pn(z) + q(z), we provide necessary conditions for the geometric limit of Julia sets to
exist, explicitly describe this set, and provide hyperbolic and Siegel examples.

Let fn : C → C be given by a degree n polynomial. For any map f : C → C, the filled Julia set
for f , denoted K(f), is the set of points that remain bounded under iteration by f . The purpose of
this study is to explore a variety of contexts in which the limit of K(fn) in the Hausdorff topology
as n → ∞ exists and describe this limiting set. We use the notation Dr = {z ∈ C : |z| < r} for the
disk centered at zero with radius r > 0 and D = D1 for the unit disk.

A 2012 study by Boyd and Schulz [4] included a result for the family fn(z) = zn+ c, for complex
parameter c. Among many other things, they proved

Theorem (Boyd-Shulz, 2012). If fn(z) = zn + c, then under the Hausdorff metric,

for any |c| < 1, lim
n→∞

K(fn) = D;

for any |c| > 1, lim
n→∞

K(fn) = ∂D.

It was shown in [9] that when |c| = 1, the limiting of K(fn) almost always fails to exist. In
another study by Alves [1], it was shown that fn,c(z) = zn + czk with fixed positive integer k, if
|c| < 1, then the limit of K(fn,c) as n → ∞ is ∂D.

For fn(z) = zn + q(z), where q is a fixed degree d polynomial, the limiting behavior of K(fn)
is more interesting. In [5], this limit is shown to exist and described explicitly for most hyperbolic
polynomial maps.

Theorem 1.1 (Brame-K, 2020 [5]). For fn(z) = zn+ q(z), where q is a hyperbolic polynomial map
with no attracting periodic points on the unit circle,

lim
n→∞

K(fn) = Kq(D) ∪
∞⋃
j=0

Sj ,

where

Kq(D) = {z ∈ C : qi(z) ∈ D for all nonnegative j} and

Sj = {z ∈ C : qj(z) ∈ ∂D and qi(z) ∈ D for all 0 ≤ i < j}.

The limit in Theorem 1.1 is the unit circle along with the set of points whose orbits remain
bounded in the unit disk or eventually map to the unit circle. Heuristically for large n, the
dynamics of z 7→ zn + q(z) are dominated by q inside the unit disk (where zn is very small) and
dominated by zn outside the unit disk (where zn blows up). The assumption that q is hyperbolic
is required to ensure that the interior of the filled Julia set is comprised exclusively of attracting
basins. For large n, these attracting basins for p are used to approximate basins of attraction of
z 7→ zn + q(z) inside D; any compact set in the complement of D is in the basin of infinity. On
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the unit circle, the dynamics of z 7→ zn + q(z) are neither governed by zn nor q exclusively, so we
require additionally that the attracting points for q not be on the unit circle. Motivated by this,
we can define f̂ : Ĉ → Ĉ by

f̂(z) =


q(z), if z ∈ D,
z2, if z ∈ ∂D, and
∞, if z /∈ D.

Defining K(f̂) as the set of points whose orbits by f̂ are bounded, it follows immediately from the

definition of f̂ that K(f̂) = Kq(D) ∪
⋃∞

j=0 Sj , so the conclusion of Theorem 1.1 can be stated as

lim
n→∞

K(fn) = K(f̂).

In fact, a more general statement is true:

Theorem 1.2 (Brame-K, 2020 [5]). For any polynomial q,

(1) ∂K(f̂) ⊆ lim
n→∞

K(fn) ⊆ lim
n→∞

K(fn) ⊆ K(f̂).

The role of the unit disk and circle is due in large part to the use of power maps zn, whose
filled Julia sets are all the closed unit disk. Here we present generalizations of the results of [5] by
replacing zn with the “power” of a polynomial in two distinct ways: for the family of maps given
by

hn(z) = (p(z))n + q(z),

where p and q are polynomials, and for the family of maps given by

gn(z) = pn(z) + q(z),

where pn is the composition of p with itself n times. We will assume throughout that the degree of
both p and q is greater than or equal to two; we leave the linear cases to future study.

Defining ĥ : Ĉ → Ĉ by

ĥ(z) =


q(z), if z ∈ p−1(D),
z2, if z ∈ ∂p−1(D), and
∞, if z /∈ p−1(D),

we have

Theorem 1.3. For any polynomials, p and q, let hn(z) = (p(z))n+ q(z). If q is hyperbolic and has
no attracting periodic points on ∂p−1(D), then

lim
n→∞

K(hn) = K(ĥ) = Kq(p
−1(D)) ∪

∞⋃
j=0

Qj ,

where

Kq(p
−1(D)) = {qj(z) ∈ p−1(D) for all nonnegative j} and

Qj = {qj(z) ∈ ∂p−1(D) and qk(z) ∈ p−1(D) for k = 1, . . . , j − 1}.

This result is quite similar to that of [5], but the unit disk is replaced with its preimage by p.
See Figures 1 and 2. More specifically, the family of maps hn is the family of maps from [5], but
the zn term is replaced with (p(z))n. As a result, the arguments presented in [5] can be adapted
with minimal change to prove Theorem 1.3; we leave the details to the reader.

We denote the interior of K(p) as intK(p). For the family of maps gn, if we again assume that
p is hyperbolic, then all points in intK(p) will be attracted to a periodic attracting k-cycle for
p, which we denote z1, . . . , zk. Thus, for each n there is some indexing of the periodic cycle, say
zℓ1 , . . . , zℓk , such that we can approximate gn(z) with a piecewise function whose pieces are given
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Figure 1. On the left is K(z200 + q(z)), where q(z) = z2 − 0.123 + 0.745i; on the
right is K(f200), where p(z) = z2 − 0.123 + 0.745i and q(z) = z2 + 0.12− 0.3i. The
color gradation in the images indicates the number of iterates required to exceed a
fixed bound for modulus; points colored black do not reach this bound in a fixed
number of iterates.

by q(z) + zℓi for i = 1, . . . , k; this approximation gets better with larger n. Note then that, in
particular, unless p has an attracting fixed point in C (that is, k = 1), limn→∞K(gn) cannot exist.
However, these limits can certainly exist along subsequences, see Figure 3.

Definition 1.4. A subsequence nm is p-convergent if pnm converges on intK(p), that is, if for
each z ∈ intK(p), limm→∞ pnm(z) exists.

Proposition 1.5. If p is hyperbolic and k is the least common multiple of the lengths of its attracting
cycles, then each subsequence nm = ℓ+mk for ℓ ∈ {1, . . . , k} is p-convergent.

For a p-convergent sequence nm, define ĝ : Ĉ → Ĉ by

ĝ(z) =

 q(z) + limm→∞ pnm(z), if z ∈ intK(p),
p(z), if z ∈ J(p), and
∞, if z /∈ K(p),

Theorem 1.6. For any polynomials p and q and p-convergent sequence nm for p,

(2) ∂K(ĝ) ⊆ lim
m→∞

∂K(gnm) ⊆ lim
m→∞

K(gnm) ⊆ K(ĝ).

Theorem 1.7. Let p and q be polynomials such that nm is p-convergent, ĝ has no attracting periodic
points on J(p), and ĝ has only topologically attracting basins in intK(ĝ). Then

lim
m→∞

K(gnm) = K(ĝ) = Kĝ(intK(p)) ∪
∞⋃
j=0

Jj .,

where

Kĝ(intK(p)) = {ĝj(z) ∈ intK(p) for all nonnegative j} and

Jj = {ĝj(z) ∈ ∂K(p) and ĝk(z) ∈ intK(p) for k = 1, . . . , j − 1}.
3



Figure 2. Top: K(fn) for p(z) = z2 + 0.05 + 0.745i, q(z) + z2 − 0.123 + 0.745i,
n = 6, 12, 25, 50. Bottom left: K(f1800) for the same p and q. The color gradation
in the images indicates the number of iterates required to exceed a fixed bound for
modulus; points colored black do not reach this bound in a fixed number of iterates.
Bottom right: (black) p−1(D) and Qj for j = 1, 2, 3 (red, blue, green).

This result is similar to that of [5], but the role of the unit disk is played by the filled Julia
set for p. See Figure 4. In fact, for p(z) = z2, all subsequences of N are p-convergent, ĝ = q on
intK(p) = D, and Theorems 1.1 and 1.2 from [5] follow from Theorem 1.7.

In Section 2, we provide a quick tour of background information, in Section 3, we discuss and
prove results for the family gn, and in Section 4 we provide examples and counterexamples for
limiting behavior of K(gn).

2. Background, Notation and Terminology

2.1. Notation and Terminology. Given two sets A,B in a metric space (X, d), the Hausdorff
distance dH(A,B) between the sets is defined as

dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
.
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Figure 3. K(gn) for p(z) = z2 − 0.123 + 0.745i and q(z) = z2 + 0.12− 0.3i. From
left to right, (top) n = 49, 50, and 51; (bottom) n = 52, 53, and 54. The color
gradation in the images indicates the number of iterates required to exceed a fixed
bound for modulus; points colored black do not reach this bound in a fixed number
of iterates.

Each point in A has some minimal distance to B, and vice versa. The Hausdorff distance is the
maximum of all these distances.

Suppose Sn and S are compact subsets of C. If for all ε > 0, there is N > 0 such that for any
n ≥ N , we have dH(Sn, S) < ε, then we say Sn converges to S and write limn→∞ Sn = S.

We also use of Painlevé-Kuratowski set convergence [11]. For a sequence of sets, Sn, we have

lim
n→∞

Sn = {z ∈ C : lim
n→∞

d(z, Sn) = 0},

lim
n→∞

Sn = {z ∈ C : lim
n→∞

d(z, Sn) = 0}.

It follows immediately that limn→∞ Sn ⊂ limn→∞ Sn. We say Sn converges to a set S in the sense of
Painlevé-Kuratowski if limn→∞ Sn = limn→∞ Sn = S, or equivalently, limn→∞ Sn ⊆ limn→∞ Sn =
S. In [7], it is shown that for sequences of bounded sets, Painlevé-Kuratowski set convergence
agrees with convergence with Hausdorff distance.

2.2. Complex Dynamics. Let us briefly review some classical definitions and facts in complex
dynamics. More details and proofs of these statements can be found in [3, 6, 10].

For a rational map, f , from Ĉ = C∪ {∞} to Ĉ, the Fatou set, denoted F(f), is the set of points
for which the iterates of f form a normal family; the Julia set of f , denoted J(f), is the complement

of F(f) in Ĉ. The set of points whose orbits remain bounded the filled Julia set, denoted K(f) as

above. Julia sets J(f) and filled Julia sets K(f) are compact in Ĉ. When f is a polynomial map,

J(f) is the boundary of K(f).A point z ∈ Ĉ is exceptional for f if f−1(z) = {z}. The set E(f) of
all exceptional points for f contains at most two points, one of those points is infinity when f is a
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Figure 4. Top: K(gn) for p(z) = z2 − 0.123 + 0.745i, q(z) + z2 + 0.12 − 0.3i,
nm = 3, 6, 15, 150 (i.e. along the p-convergent subsequence 0 mod 3). The color
gradation in the images indicates the number of iterates required to exceed a fixed
bound for modulus; points colored black do not reach this bound in a fixed number
of iterates. Bottom left: K(g1500) for the same p and q. Bottom right: J(p) (black)
and Jj for j = 1, 2, 3 (red, blue, green).

polynomial. For any open set U which intersects the Julia set of f and any z ∈ Ĉ \ E(f), there is
an integer n ≥ 1 such that z ∈ fn(U).

A point z ∈ Ĉ is periodic for f with period k if fk(z) = z and z, f(z), . . . , fk−1(z) are all
distinct. The multiplier λ of a periodic point z0 of period k is λ = (fk)′(z0). If |λ| < 1, z0 is said
to be attracting; if λ > 1, z0 is repelling; if λ = 1, z0 is indifferent. All repelling periodic points
are contained in J(f), and repelling periodic points are dense in J(f). Attracting periodic points
are contained in F(f). Moreover, for every attracting periodic point z0 of period k, there is an
open neighborhood U of z0 such that fk(U) ⊂ U and the orbit by fk of any point in U converges
to z0. The set of all points whose orbits by fk converge to z0 is the basin of attraction for z0.
More generally, we say a periodic point of period k, z0, of a map f (not necessarily rational) is
topologically attracting if there is a neighborhood U of z0 such that {fnk|U} converges uniformly
to the constant map U → z0; a basin containing a topologically attracting periodic point is called a
topologically attracting basin. Finally, a map is hyperbolic if there is a conformal metric µ defined
in an open neighborhood of of J(f) at every point z ∈ J(f), we have ∥Dfz(v)∥µ > ∥v∥µ for every

nonzero v in the tangent space T Ĉz. An equivalent definition of hyperbolicity (for rational maps)
is a map is hyperbolic if every point in F(f) converges to an attracting periodic cycle.
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3. Iterates of Polynomials

In [2], Bayraktar and Efe show that J0 = J(p) ⊂ lim infn→∞K(gn), and their techniques apply
to a much wider class of polynomial function. However, since our sequence of maps, gn, is changing
in a dynamical sense (iteration rather than powers), some aspects of the proof of Theorem 1.7 are
much simpler, so we include them here. For example, if for K ⊂ C, we define

K−ε = {z ∈ K : d(z, ∂K) ≥ ε}, and

K+ε = {z ∈ C : d(z,K) ≤ ε},
then proof of the following lemma is nearly trivial.

Lemma 3.1. For all ε > 0, there is an N such that for any n ≥ N ,

K(gn) ⊆ K(p)+ε.

Proof. Let R > 0 be large enough so that if z /∈ DR then |p(z)| > 3|z|. Let N ≥ 1 be large enough
so that |q(z)| < |z|n for all z ∈ C and n ≥ N . For any z /∈ DR and n ≥ N , we have

|gn(z)| ≥ |pn(z)| − |q(z)| ≥ (3n − 1)|z|n ≥ 2|z|,
so C \ DR is in the basin of infinity for gn.

For any ε > 0, we can choose R > 0 above large enough so that K(p)+ε ⊂ DR. Setting
A = maxz∈DR

q(z), there is an N ≥ 1 such that for any z ∈ DR \K(p)+ε and all n ≥ N we have

pn(z) /∈ DR+A, hence gn(z) /∈ DR. Thus C\K(p)+ε is in the basin of infinity for gn. □

Lemma 3.2. If nm is p-convergent, then
∞⋃
j=0

Jj ⊂ lim
n→∞

∂K(gnm).

Proof. We first show that J0 = J(p) ⊂ limn→∞ ∂K(gn). Let z0 ∈ J(p) be a repelling periodic
point of period k ≥ 1 such that −q(z0) /∈ E(p). Let us observe that if ε is sufficiently small, then
there exists topological disks Vn for n ≥ 0 such that limn→∞ Vn = {z0} and pn maps Vn to V as a
covering map whose only possible branch value is −q(z0). Indeed, as −q(z0) is not exceptional for
p we can pull back V by iterates of p to get close to z0, and as z0 is a repelling periodic point we
can then pull back by the local branch of p−k which fixes z0 to converge towards z0. Let U be the
disk of radius ε centered at z0. For large n ≥ 0, the map

f(z) = pn(z) + q(z0)

maps Vn ⊂ U to U0, so f has a fixed point in Vn. When n is sufficiently large, so in particular Vn

is close to z0, we have

|f(z)− z| > ε0
2
,

and
|f(z)− gn(z)| = |q(z0)− q(z)| < ε0

2
for all z ∈ ∂Vn. It therefore follows from Rouché’s theorem that gn has a fixed point in Vn ⊂ U .
Thus for all large n there exists a point z ∈ K(gn) with |z − z0| < ε. As z ∈ ∂K(p), Lemma 3.1
implies that for all large n there is also a point z /∈ K(gn) with |z − z0| < ε. Hence there must
be some point z ∈ J(gn) with |z − z0| < ε. As ε can be chose arbitrarily small, it follows that
z0 ∈ limn→∞ ∂K(gn). As the repelling periodic points of p are dense in J(p) and E(p) contains at
most one point in C, it follows that J(p) ⊂ limn→∞ ∂K(gn).

The result now follows from backward invariance of J(gnm) and the fact that for any compact
subset, K, of the interior of K(p) and all ε > 0, there is an N such that

d(gnm(z), ĝ(z)) < ε
7



for all z ∈ K any m ≥ N . □

Proof of Theorem 1.6. By construction, when there are an infinite number of nonempty Jj , they
accumulate on ∂

⋂∞
j=0 ĝ

−j(intK(p)). Using this with Lemma 3.2, we have∂
∞⋂
j=0

ĝ−j(intK(p))

 ∪
∞⋃
j=0

Jj = ∂K(ĝ) ⊆ lim
m→∞

∂K(gnm).

Next, we have that limm→∞ ∂K(gnm) ⊂ limm→∞K(gnm), which follows from definition. Lastly,
note that if z /∈ K(p)+ε, then by Lemma 3.1, we know z /∈ limm→∞K(gnm). Moreover, if z ∈
K(p)+ε, then we may assume z ∈ K(p)−ε\

⋃∞
j=0 Jj because

⋃∞
j=0 Jj is already in limm→∞K(gnm)

by Lemma 3.2. Then z is either in
⋂∞

j=0 ĝ
−j(intK(p)) or z maps by gn outside K(p)+ε for all

sufficiently large n. Thus,

lim
m→∞

K(gnm) ⊆
∞⋂
j=0

ĝ−j(intK(p)) ∪
∞⋃
j=0

Jj = K(ĝ).

□

Proof of Theorem 1.7. Theorem 1.6 showed ∂K(ĝ) ⊆ limm→∞K(gnm). Hence, it remains only to
show that

int

 ∞⋂
j=0

ĝ−j(intK(p))

 ⊂ lim
m→∞

K(gnm).

Let K =
⋂∞

j=0 ĝ
−j(intK(p)), so K−ε is a compact subset of K whose elements at least ε away from

the boundary of K. By assumption, ĝ has only topologically attracting components in intK(ĝ),
hence we have that ĝk(K−ε) converges uniformly to some subset of the attracting periodic points
of ĝ as k → ∞ in the Hausdorff sense. We denote this limit as B = limk→∞ ĝk(K−ε) and note that
B is comprised of attracting periodic points for ĝ. Because we assume ĝ has no attracting periodic
points on J(p), for sufficiently small ε0 > 0 (and possibly smaller ε), we have B+ε0 ⊂ K−ε.

Let k0 ≥ 0 be large enough so that ĝk0(K−ε) ⊂ intB+ε0 . By assumption gnm converges uniformly
to ĝ on K−ε, thus if m is sufficiently large then gk0nm

(K−ε) ⊂ B+ε0 ⊂ K−ε. Hence K−ε ⊂ K(gnm)

for all large m, so K−ε ⊂ limm→∞K(gnm). Taking ε → 0 completes the proof. □

4. Examples

Throughout this section, the color gradation in images indicates the number of iterates required
to exceed a fixed bound for modulus; points colored black do not reach this bound in a fixed number
of iterates.

Example 1. Let p(z) = z2 + c and q(z) = z2 + d, where c is chosen so that is p has an attracting
fixed point, z0. Since p has an attracting fixed point, any subsequence of positive integers is
p-convergent, and we have

ĝ(z) = q(z) + z0

Now choose d so that ĝ has an attracting cycle {z1, . . . , zk} ⊂ intK(p). In that case, we also have
{z1, . . . , zk} ⊂

⋂∞
j=0 ĝ

−j(intK(p)). Thus, we may apply Theorem 1.7.

More specifically, when c = 0.7, we have z0 ≈ −0.47468, so choosing d = 0.4i, we have q(z) ≈
z2−0.47468+0.4i, which is hyperbolic with an attracting fixed point z1 ≈ −0.38103+0.227i ∈ K(p).
It follows that limk→∞ qk(intK(p)) = {z1} ∈ intK(p); see Figure 5.
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Figure 5. limn→∞K(gn) when p(z) = z2 − 0.7 and q(z) = z2 + 0.4i.

Example 2. When p has an attracting k-cycle, for any k ≥ 2, ĝ is a piecewise polynomial, and
verifying the hypotheses of Theorem 1.7 is more complicated. Let p(z) = z2 − 1 and q(z) =
αz2 + 0.35− 0.2i, so p has an attracting 2-cycle, {0,−1}, and for |α| < 1/100, q has an attracting
fixed point at z0 ≈ 0.35 + 0.2i ∈ intK(p). Since p has an attracting two-cycle, any subsequence of
odd positive integers is p-convergent, and any subsequence of even positive integers is p-convergent.
Working with the p-convergent subsequence of even integers, we have

ĝ(z) =

{
q(z), if z is in the basin of 0 for p2;
q(z)− 1, if z is in the basin of − 1 for p2.

Since z0 is in the basin of 0 for p, where ĝ = q, we have z0 ∈
⋂∞

j=0 ĝ
−j(intK(p)). Let K be

a compact subset of
⋂∞

j=0 ĝ
−j(intK(p)). Note first that for any z ∈ K, we have q(z) ∈ {z ∈

C : |z− z0| < 7/100} ⊂ intK(p) and q(z) + 1 ∈ {z ∈ C : |z− z0 +1| < 7/100} ⊂ C\K(p). It follows
that if z is the basin of −1 for p, then ĝ(z) /∈ intK(p). Moreover, if z is the basin of 0 for p, then
ĝ(z) is in the immediate basin of 0 for p. Thus, we may apply Theorem 1.7; see Figure 6.

Example 3. Let p(z) = e2πiθz + z2, where θ = (
√
5 + 1)/2 is the golden mean. The map p has a

Siegel disk, ∆, centered at z = 0, so p|∆ is conjugate by an invertible map ϕ to a map R : Dr → Dr

given by R(z) = e2πiθz. Since θ is of bounded type, the critical point for p is on the boundary
of the Siegel disk, in J(p). Thus, the interior of K(p) is comprised of just the Siegel disk and its
preimages by p.

The Fibonacci sequence, Fn, satisfies limn→∞ Fn+1/Fn = θ, so RFn converges to the identity
map as n → ∞. It follows that Fn is p-convergent because for any z in the interior of the Siegel
disk,

lim
n→∞

pFn(z) = (ϕ−1 ◦RFn ◦ ϕ)(z) = z.

Then ĝ(z) = z + q(z), so any choice of q for which ĝ has only attracting Fatou basins satisfies the
hypotheses of Theorem 1.7. For example, when q(z) = z2 − 0.2 − 0.4i, ĝ has an attracting fixed
point at z0 ≈ −0.57− 0.35i; see Figure 7.

Example 4. Let p(z) = z2 and q(z) = 2z2 + 1/8 and note that in this example, all subsequences
are p-convergent, and K(q) is a strict subset of K(p) = D. In [8], Douady proved that K(q) does
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Figure 6. limn→∞K(gn) through even n when p(z) = z2 − 1 and q(z) = 1
100z

2 +
0.35− 0.2i.

Figure 7. Approximation of limnm→∞K(gnm) through the Fibonacci sequence
when p(z) = e2πiθz + z2, θ = (

√
5 + 1)/2, and q(z) = z2 − 0.2− 0.4i.

not depend continuously on q; in particular, there is a sequence of positive numbers, εn, such that
εn → 0 and if qn(z) = q(z) + εn, then the limit of K(qn) as n → ∞ exists and is a strict subset of
K(q). Since gn converges to q uniformly on compact subsets of D, one can use similar techniques
to show that there is a subsequence nm so that limit of K(gnm) as m → ∞ exists and is a strict
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subset of K(ĝ). The primary complication is defining appropriate Fatou coordinates for each gn,
but these are guaranteed to exist by the work of Shishikura in [12]. Note that Theorem 1.7 does
not apply to this example because intK(ĝ) has a basin that is not attracting.
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